函数概念的发展历史过程 - 范文中心

函数概念的发展历史过程

09/22

函数概念的发展历史过程

自17世纪近代数学产生以来,函数的概念一直处于数学的核心位置,数学和科学的绝大部分与函数内容有关,在函数,物理和其他学科中,函数关系随处可见.例如,圆柱体的体积和表面积是其半径的函数,流体膨胀的体积是温度的函数,运动物体的路程是时间的函数等等.

十七世纪伽俐略(G.Galileo,意,1564-1642)在《两门新科学》一书中,几乎从头到尾包含着函数或称为变量的关系这一概念,用文字和比例的语言表达函数的关系.1673年前后笛卡尔(Descartes,法,1596-1650)在他的解析几何中,已经注意到了一个变量对于另一个变量的依赖关系,但由于当时尚未意识到需要提炼一般的函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分的时候,数学家还没有明确函数的一般意义,绝大部分函数是被当作曲线来研究的.

1718年约翰•贝努利(BernoulliJohann,瑞,1667-1748)才在莱布尼兹函数概念的基础上,对函数概念进行了明确定义:由任一变量和常数的任一形式所构成的量,贝努利把变量x和常量按任何方式构成的量叫“x的函数”,表示为,其在函数概念中所说的任一形式,包括代数式子和超越式子.

18世纪中叶欧拉(L.Euler,瑞,1707-1783)就给出了非常形象的,一直沿用至今的函数符号.欧拉给出的定义是:一个变量的函数是由这个变量和一些数即常数以任何方式组成的解析表达式.他把约翰•贝努利给出的函数定义称为解析函数,并进一步把它区分为代数函数(只有自变量间的代数运算)和超越函数(三角函数、对数函数以及变量的无理数幂所表示的函数),还考虑了“随意函数”(表示任意画出曲线的函数),不难看出,欧拉给出的函数定义比约翰•贝努利的定义更普遍、更具有广泛意义.

1822年傅里叶(Fourier,法,1768-1830)发现某些函数可用曲线表示,也可用一个式子表示,或用多个式子表示,从而结束了函数概念是否以唯一一个式子表示的争论,把对函数的认识又推进了一个新的层次.1823年柯西(Cauchy,法,1789-1857)从定义变量开始给出了函数的定义,同时指出,虽然无穷级数是规定函数的一种有效方法,但是对函数来说不一定要有解析表达式,不过他仍然认为函数关系可以用多个解析式来表示,这是一个很大的局限,突破这一局限的是杰出数学家狄利克雷.

1837年狄利克雷(Dirichlet,德,1805-1859)认为怎样去建立x与y之间的关系无关紧要,他拓广了函数概念,指出:“对于在某区间上的每一个确定的x值,y都有一个或多个确定的值,那么y叫做x的函数.”狄利克雷的函数定义,出色地避免了以往函数定义中所有的关于依赖关系的描述,简明精确,以完全清晰的方式为所有数学家无条件地接受.至此,我们已可以说,函数概念、函数的本质定义已经形成,这就是人们常说的经典函数定义.

等到康托尔(Cantor,德,1845-1918)创立的集合论在数学中占有重要地位之后,维布伦(Veblen,美,1880-1960)用“集合”和“对应”的概念给出了近代函数定义,通过集合概念,把函数的对应关系、定义域及值域进一步具体化了,且打破了“变量是数”的极限,变量可以是数,也可以是其它对象(点、线、面、体、向量、矩阵等).

1914年豪斯道夫(F.Hausdorff)在《集合论纲要》中用“序偶”来定义函数.其优点是避开了意义不明确的“变量”、“对应”概念,其不足之处是又引入了不明确的概念“序偶”.库拉托夫斯基(Kuratowski)于1921年用集合概念来定义“序偶”,即序偶(a,b)为集合{{a},{b}},这样,就使豪斯道夫的定义很严谨了.1930年新的现代函数定义为,若对集合M的任意元素x,总有集合N确定的元素y与之对应,则称在集合M上定义一个函数,记为y=f(x).元素x称为自变元,元素y称为因变元.

函数概念通过两百多年的锤炼,变革,形成了函数现代定义,应该说已经相当完善了,不过数学的发展是无止境的.函数现代定义的形式并不意味着函数概念发展的历史终结,近二十年来,数学家们又把函数归结为一种更广泛的概念——“关系”.


相关内容

  • 高中数学优秀说课稿
    高中数学优秀说课稿 等差数列 本节课讲述的是人教版高一数学(上)§3.2等差数列(第一课时)的内容. 一.教材分析 1.教材的地位和作用: 数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用.一方面, 数列作为一种 ...
  • 函数概念说课稿
    <函数的概念>说课稿 棠湖中学 唐小文 各位专家.各位老师: 大家好! 今天我说课的题目是<函数的概念>,本课题是人教A 版必修1中1.2的内容, 计划安排两个课时,本课时的内容为:函数的概念.三要素及简单函数的定义 ...
  • 高中微积分教学探究
    高中微积分教学探究 张哓波(B00111623) 导师:林磊副教授 [摘要]在上海的高中阶段,自上世纪90年代中期以来,已经试点了好几年微积分的内容.但于全国而言,从2001年推广的试验本教材才第一次出现微积分,并将在2004年的高考试卷中 ...
  • 幂函数的教学设计
    幂函数的教学设计 刘 飚 (江苏省张家港市暨阳高级中学 215600) 新课标指出高中数学课程应该返璞归真, 努力揭示数学概念.法则.结论的发展过程和本质. 通过典型例子的分析和学生自主探索活动, 使学生理解数学概念.结论逐步形成的过程, ...
  • 函数的有关概念
    >说课稿 各位上午好!我是 ,今天我将为大家讲的课题是<函数的概念>. 首先,我对本节的教材进行一些解读 1.教材地位 函数的有关概念>是人教版高中数学(必修)第一册第一章"集合与函数概念"的第二 ...
  • 辩证思维能力如何渗透在函数概念的教学中
    摘 要:本文主要是要求学生对函数概念有正确清晰的认识,以熟练掌握函数的表示方法,培养辩证思维方面的能力. 关键词:概念形成 函数表示法 辩证思维 概念是一种思维形式.函数是数学中最主要的概念之一,函数理论是高等数学的主要组成部分,是近代科学 ...
  • 德育案例1
    教师个人专业发展规划 2015--2016学年度第二学期 任广香 一.现状分析 积极撰写教育教学论文.多次开县.区.乡级公开课,并受到好评.但是从学校未来的发展对师资的需求来看,自己还有很大的缺陷,有: 1.新课程思想观念.现代教育理论和管 ...
  • 大学数学与高中数学衔接问题的研究
    大学数学与高中数学衔接问题的研究 倪诗婷.高瑜婷.孙于惠.金梦蝶 导师:李金其 摘要:大学数学和高中数学在教学内容.教学方式.学习方式等方面的脱节,会直接影响大学数学的教学质量.本文从浙江师范大学在校大学生角度研究高中数学与大学数学的衔接问 ...
  • 齐齐哈尔市20XX年数学学科考试说明(定稿)
    齐齐哈尔市2017年数学学科考试说明 一.指导思想 初中升学考试应有利于贯彻国家的教育方针,促进学校全面实施素质教育:有利于体现九年义务教育的性质,全面提高教育质量:有利于引导新课程的实施,全面落实课程标准所设定的目标:有利于引导课程改革的 ...
  • 高一数学教案 [对数函数]教学设计
    <对数函数>教学设计 常州市第二中学 季明银 一.教学设计意图: 本课的教学设计基于"人人都能获得必要的数学"即平等性的考虑,坚持面向全体学生,努力创设适合学生发展的数学教育. 根据建构主义的观点,学生的学习 ...