三角形内切椭圆的构造 - 范文中心

三角形内切椭圆的构造

08/26

Forum Geometricorum V olume 10(2010)141–148.

ISSN 1534-1178

Constructions with Inscribed Ellipses in a Triangle

Nikolaos Dergiades

Abstract . We give a simple construction of the axes and foci of an inscribed

ellipse with prescribed center, and as an application, a simple solution of the

problem of construction of a triangle with prescribed circumcevian triangle of

the centroid.

1. Construction of the axes and foci of an inscribed ellipse

Given a triangle ABC , we give a simple construction of the axes and foci of an inscribed ellipse with given center or perspector. If a conic touches the sides BC , CA , AB at X , Y , Z respectively, then the lines AX , BY , CZ are concurrent at a point P called the perspector of the conic. The center M of the conic is the com-plement of the isotomic conjugate of P . In homogeneous barycentric coordinates, if P =(p :q :r ) , then 111111+:+:+=(p (q +r ) :q (r +p ) :r (p +q )) .

M =q r r p p q

B Q B Figure 1

Consider triangle ABC and its inscribed ellipse with center M =(u :v :w ) as the orthogonal projections of a triangle AB C and its incircle. We may take A =A and assume BB =m , CC =n . If the incircle of AB C touches B C , C A and AB at X , Y , Z respectively, then X , Y , Z are the orthogonal projections of X , Y , Z . It follows that the perspector P is the projection of Publication Date:November 15, 2010. Communicating Editor:Paul Yiu.

142N. Dergiades the Gergonne point G e of AB C . Suppose triangle AB C has sides B C =a , C A =b and AB =c , then

111b +c −a :c +a −b :a +b −c =::. p q r

It follows that

111111a :b :c =+:+:+=u :v :w. q r r p p q

From this we draw a remarkable conclusion.

Proposition 1. If a triangle and an inscribed ellipse are the orthogonal projections of a triangle and its incircle, the sidelengths of the latter triangle are proportional to the barycentric coordinates of the center of the ellipse.

Since a , b , c satisfy the triangle inequality, the center M =(u :v :w ) of the ellipse is an interior point of the medial triangle of BAC .

We determine the relative positions of ABC and AB C leading to a simple construction of the axes and foci of the inscribed ellipse of given center M . We firstconstruct two triangles A +BC and A −BC with sidelengths proportional to the barycentric coordinates of M .

Construction 2. Let M =(u :v :w ) be a point in the interior of the medial triangle of ABC , with cevian triangle A 0B 0C 0. Construct

(i)the parallels of BB 0and CC 0through A to intersect BC at D and E respec-tively,

(ii)the circles B (D ) and C (E ) to intersect at two points A +and A −symmetric in the line BC . Label A +the one on the opposite side of BC as A .

Each of the triangles A +BC and A −BC have sidelengths u :v :w .

D E Figure 2

Constructions with inscribed ellipses in a triangle 143Proof. Note that

BC 0u BC BC ==, =CA −CE C 0A v BC B 0C u BC ===. A −B DB AB 0w

From these, BC :CA −:A −B =u :v :w ; similarly for BC :CA +:A +B . Lemma 3. The lengths of AA +and AA −are given by √√Q +16ΔΔ Q −16ΔΔ √√AA +=and AA −=, 2u 2u

where

Q =(b 2+c 2−a 2) u 2+(c 2+a 2−b 2) v 2+(a 2+b 2−c 2) w 2,

and Δ is the area of the triangle with sidelengths u , v , w .

Proof. Applying the law of cosines to triangle ABA −, we have

22AA 2−=AB +BA −−2AB ·BA −cos(ABC −A −BC ) aw 2aw 2(cosB cos A −BC +sin B sin A −BC ) −2c ·=c +u u c 2u 2+a 2w 2−2ca cos B ·wu cos A −BC −2ca sin B ·wu sin A −BC =u 2

2c 2u 2+2a 2w 2−(c 2+a 2−b 2)(w 2+u 2−v 2) −16ΔΔ =2u 2

Q −16ΔΔ =. 2u 2

The case of AA +is similar. (1)

Let Q be the intersection of the lines BC and B C . The line AQ is the inter-section of the planes ABC and AB C . The diameters of the incircle of AB C parallel and orthogonal to AQ project onto the major and minor axes of the in-scribed ellipse.

Proposition 4. The line AQ is the internal bisector of angle A +AA −.

ab Proof. The sidelengths of triangle A −BC are BC =a , CA −=av u =a and

ac =A −B =aw u a . Set up a Cartesian coordinate system so that A =(x 1, y 1) , B =(−a, 0) , C =(0, 0) , A +=(x 0, −y 0) and A −=(x 0, y 0) , where

a 2+b 2−c 2·a, x 0=−CA −cos A −CB =−2a 2

a 2+b 2−c 2. x 1=−b cos C =−2a Since the lines AA +and AA −have equations

(y 1+y 0) x −(x 1−x 0) y −(x 1y 0+x 0y 1) =0,

(y 1−y 0) x −(x 1−x 0) y +(x 1y 0−x 0y 1) =0, (2)(3)

144N. Dergiades a bisector of angle A +AA −meets BC at a point with coordinates (x, 0) satisfying

((y 1+y 0) x −(x 1y 0+x 0y 1)) 2((y 1−y 0) x +(x 1y 0−x 0y 1)) 2=. (y 1−y 0) 2+(x 1−x 0) 2(y 1+y 0) 2+(x 1−x 0) 2

Simplifying this into

2222222(x 1−x 0) x 2+(x 20+y 0−x 1−y 1) x +x 0(x 1+y 1) −x 1(x 0+y 0) =0,

and making use of (2)and (3),we obtain 2 2 2a +b 2−c 2a 2+b 2−c 2b b −−x 2+a x 222a 2a a 2a 2 2+b 2−c 22+b 2−c 2a a 2−b ·=0. −b 2·2a 22a 2

Now, since

a 2=(m −n ) 2+a 2,

we reorganize (4)into the form b 2=n 2+b 2, c 2=m 2+c 2, (4)(5)

((m −n ) x −na )((m (a 2+b 2−c 2)+n (c 2+a 2−b 2)) x −(n (b 2+c 2−a 2) −2mb 2) a ) =0. Note that the two roots

na X 1=m −n

satisfy

m 2b 2−mn (b 2+c 2−a 2) +n 2c 2>0, (x 0−x 1)(X 1−X 2) =a 2+(m −n ) 2

since the discriminant of m 2b 2−mn (b 2+c 2−a 2)+n 2c 2(asa quadratic form in m , n ) is (b 2+c 2−a 2) 2−4b 2c 2=−4b 2c 2sin 2A X 2and X 1is the root that corresponds to the internal bisector. Since X 1n X 1+a =m , this intercept is the intersection Q of the lines BC and B C .

Theorem 5. The inscribed ellipse of triangle ABC with center M =(u :v :w ) (insidethe medial triangle) has semiaxes given by

a max =u (AA ++AA −)

2(u +v +w ) and a min =u (AA +−AA −) . 2(u +v +w ) and (n (b 2+c 2−a 2) −2mb 2) a X 2=m (a 2+b 2−c 2) +n (c 2+a 2−b 2)

Proof. Making use of (5),we have

2mn =m 2+n 2−(m −n ) 2=(b 2+c 2−a 2) −(b 2+c 2−a 2) .

It follows that

4(b 2−b 2)(c 2−c 2) =((b 2+c 2−a 2) −(b 2+c 2−a 2)) 2,

Constructions with inscribed ellipses in a triangle 145and

4b 2c 2−(b 2+c 2−a 2) 2+4b 2c 2−(b 2+c 2−a 2) 2

=4b 2c 2+4c 2b 2−2(b 2+c 2−a 2)(b 2+c 2−a 2)

=2((b 2+c 2−a 2) a 2+(c 2+a 2−b 2) b 2+(a 2+b 2−c 2) c 2) . (6)Note that 4b 2c 2−(b 2+c 2−a 2) 2=4b 2c 2(1−cos 2A ) =4b 2c 2sin 2A =16Δ2and similarly, 4b 2c 2−(b 2+c 2−a 2) 2=16Δ(AB C ) 2. Let ρand ρ be the inradii of triangle AB C and the one with sidelengths u , v , w . These two triangles ρ(u +v +w ) ρ, we have have ratio of similarity ρ =2Δ

Δ(AB C ) =Δ ρ(u +v +w )

2Δ 2ρ2(u +v +w ) 2=. 4Δ

With this, (6)can be rewritten as

2(u +v +w ) 4ρ4−(u +v +w ) 2Q ρ2+32Δ2Δ 2=0.

This has roots ±ρ1and ±ρ2, where

√√Q +16ΔΔ +Q −16ΔΔ √, ρ1=22(u +v +w )

Note that ρ1ρ2=4ΔΔ , (u +v +w ) 2√ρ2=√Q +16ΔΔ −Q −16ΔΔ √. 22(u +v +w ) and

4ΔΔ Δρ1ρ2a min ===. a max Δ(AB C ) ρ2(u +v +w ) 2ρ2

Since ρ1>ρ2, it follows that a max =ρ=ρ1and a min =ρ2.

Now we construct the axes and foci of an inscribed ellipse.

Construction 6. Let M be a point in the interior of the medial triangle of ABC , and A +BC , A −BC triangles with sidelengths proportional to the barycentric co-ordinates of M (seeConstruction 2) . Construct

(1)the internal bisector of angle A +AA −to intersect the line BC at Q ,

(2)the parallel of AQ through M . This is the major axis of the ellipse .

Further construct

(3)the orthogonal projection S of Q on AA +,

(4)the parallel through M to AA +to intersect A 1S at T , (5)the circle M (T ) . This is the auxiliary circle of the ellipse .

Finally, construct

(6)the perpendiculars to the sides at the intersections with the circle M (T ) to intersect the major axis at F and F . These are the foci of the ellipse. See Figure 3.

146N. Dergiades

Figure 3.

2. The circumcevian triangle of the centroid

For the Steiner inellipse with center G =(1:1:1) , the triangles A +BC and A −BC are equilateral triangles, and √√222222a +b +c +43Δa +b +c −43Δand AA −=. AA +=22

By Theorem 5,

AA ++AA −AA +−AA −and a min =. a max =66

Theorem 7. Let G be the centroid of ABC , with circumcevian triangle A 1B 1C 1. The pedal circle of G relative to A 1B 1C 1has center the centroid G 1of A 1B 1C 1. Hence, G is a focus of the Steiner inellipse of triangle A 1B 1C 1.

Proof. Let a , b , c and a 1, b 1, c 1be the sidelengths of triangles ABC and A 1B 1C 1respectively. Let x =AG , y =BG and z =CG . By Apollonius’theorem,

2b 2+2c 2−a 2, x =922c 2+2a 2−b 2y =, 922a 2+2b 2−c 2z =. 92

Constructions with inscribed ellipses in a triangle

147

C 1

Figure 4

If P is the power of G relative to circumcircle of ABC , then

GA 1=P , x GB 1=P , y GC 1=P . z

From the similarity of triangles GBC and GC 1B 1, we have

GC 1CG ·GC 1P a 1===. a BG BG ·GC yz

From this we obtain a 1, and similarly b 1and c 1:

a 1=a P , yz b 1=b P , zx c 1=c P . xy (7)

The homogeneous barycentric coordinates of G relative to A 1B 1C 1are

ΔGB 1C 1:ΔGC 1A 1:ΔGA 1B 1

ΔGB 1C 1ΔGC 1A 1ΔGA 1B 1::=ΔGBC ΔGCA ΔGAB GB 1·GC 1GC 1·GA 1GA 1·GB 1::=GB ·GC GC ·GA GA ·GB (BG ·GB 1)(CG ·GC 1) (CG ·GC 1)(AG ·GA 1) (AG ·GA 1)(BG ·GB 1) ::=BG 2·CG 2CG 2·AG 2AG 2·BG 2P 2P 2P 2=22:22:22y z z x x y

=x 2:y 2:z 2.

The isogonal conjugate of G (relativeto triangle A 1B 1C 1) is the point

a 2b 2c 211=a 2:b 2:c 2. G =2:2:12x y z ∗

148N. Dergiades We findthe midpoint of GG ∗by working with absolute barycentric coordinates. 222Since x 2+y 2+z 2=13(a +b +c ) , and

2(a 2+b 2+c 2) , 3x +a =3y +b =3z +c =3we have for the firstcomponent, 3x 2+a 2x 21a 21==. +2x 2+y 2+z 2a 2+b 2+c 22(a 2+b 2+c 2) 3222222

Similarly, the other two components are also equal to 13. It follows that the midpoint ∗of GG is the centroid G 1of A 1B 1C 1. As such, it is the center of the pedal circle of the points G and G ∗, which are the foci of an inconic that has center and perspector

G 1. This inconic is the Steiner inellipse of triangle A 1B 1C 1.

3. A construction problem

Theorem 7gives an elementary solution to a challenging construction problem in Altshiller-Court [1,p.292, Exercise 11].The interest on this problem was reju-venated by a recent message on the Hyacinthos group [2].

Problem 8. Construct a triangle given, in position, the traces of its medians on the circumcircle.

Solution. Let a given triangle A 1B 1C 1be the circumcevian triangle of the (un-known) centroid G of the required triangle ABC . We construct the equilateral triangles A +B 1C 1and A −B 1C 1on the segment B 1C 1. Let G 1be the centroid of A 1B 1C 1and r =16(A 1A ++A 1A −) . The circle G 1(r ) is the auxiliary circle of the Steiner inellipse, hence the pedal circle of G (oneof the foci) relative to A 1B 1C 1. From the intersections of this circle with the sides of A 1B 1C 1and the parallel from G 1to the internal bisector of angle A +A 1A −we determine the point G (twosolutions). The second intersections of the circle with the lines A 1G , B 1G , C 1G give the points A , B , C .

References

[1]N. Altshiller-Court, College Geometry , second edition, Barnes and Noble, 1952; Dover reprint,

2007.

[2]Hyacinthos message 19264, September 14, 2010.

Nikolaos Dergiades:I. Zanna 27, Thessaloniki 54643, Greece

E-mail address :ndergiades@yahoo.gr


相关内容

  • 焦点三角形
    焦点三角形 焦点三角形问题是重要考点,考到的内容有:椭圆或双曲线定义和正余弦定理以及面积公式等.常与曲线的离心率相结合,注意平面几何知识的应用. 一:椭圆的焦点三角形 椭圆的焦点三角形是指以椭圆的两个焦点F1,F2与椭圆上任意一点P为顶点组 ...
  • 考点23 双曲线
    温馨提示: 此题库为Word 版,请按住Ctrl, 滑动鼠标滚轴,调节合适的观 看比例,关闭Word 文档返回原板块. 考点23 双曲线 1. (2010²安徽高考理科²T5)双曲线方程为x 2-2y 2=1,则它的右焦点坐标为( ) ⎛⎫ ...
  • 高中数学难题集06
    高中数学难题集06 1.二次函数f (x )=ax 2+bx +c 的系数均为整数,若α, β∈(1,2),且α, β是方程f (x )=0两个不等的实数根,则最小正整数a 的值为 . 解1:显然f (x ) =(2x -3)(3x -4) ...
  • 人教版高二数学知识点精华
    人教版高二数学知识点总结 <解三角形> 1. 正弦定理 a s i n A = b s i B n = c =2R (R 为∆A B 的C 外接圆半径 ) s C i n 2. ∆A B C 中,A +B+C=π b +c -a ...
  • 椭圆曲率半径的四种求法
    中学生数理化·教与学 椭圆曲率半径的四种求法 ◆广西柳州铁一中 温黎明 要分析沿曲线运动的质点在曲线上某点的运动情况,往往要先弄清曲线在这一点切线的方向及曲折程度,切线方向可由斜率反映出来,弯曲程度可用极限圆曲率半径反映出来.如果在曲线上某 ...
  • 椭圆焦点三角形面积公式的应用
    椭圆焦点三角形面积公式的应用 x2y2 定理 在椭圆221(a>b>0)中,焦点分别为F1.F2,点P是椭圆上任 ab 意一点,F1PF2,则SF1PF2b2tan  2 . 证明:记|PF1| r1,|PF2 ...
  • 门座起重机基础知识
    门座起重机基础知识 一.门座起重机的构造及分类 门座起重机是具有沿地面轨道运行,下方可通过铁路车辆或其他地面车辆的门形座架的可回转臂架型起重机. 门座起重机的构造,大体上由以下几部分组成.结构部分,包括臂架系统.人字架.旋转平台.司机室.门 ...
  • 数控车床加工椭圆的宏程序实例
    随着数控技术不断进步, 数控车床加工中各种复杂形面也日渐增多, 如椭圆.抛物线.正弦曲线.余弦曲线.双曲线等各种非圆曲面.对于上述各种复杂成形面, 利用CAM 软件进行自动编程相对简单, 但由于种种原因, 在绝大多数情况下数控车床主要还是依 ...
  • 转化与化归思想在数学解题中的应用
    I数理化研究1..[关it] 转化与化归思想在数学解题中的应用 ●陈欣龙 摘要:转化与化归的思想方法是数学中最基本的思想方法.数学中的一切问题的解决都离不开转化与化归,数形结合思想体现了数与彤的 相互转化:函数与方程思想体现了函数.方程.不 ...
  • 新课改区高考试题[平面解析几何]
    新课改区高考试题<平面解析几何> 2010年普通高等学校招生全国统一考试理科数学 全国:(12)已知双曲线E 的中心为原点,F(3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N(-12,-15 ...