单晶硅的制备 - 范文中心

单晶硅的制备

03/24

课程报告

题 目 单晶硅的制备

课 程 名 称 城市建设与环境友好材料

院 部 名 称 龙蟠学院

专 业 材料科学与工程

班 级 M10材料科学与工程

学 生 姓 名 周海逢

学 号 1021416044

指 导 教 师 张小娟

金陵科技学院教务处制

单晶硅的制备

目录

1、摘要

2、绪论

21 单晶硅简介

2.2 国内外的技术介绍

2.3单晶硅片的用途

3、单晶硅的制备方法

3.1直拉法

3.1.1 直拉法基本原理和基本过程

3.1.2直拉法-技术改进

3.2区熔法

3.2.1悬浮区熔法

3.2.2水平区熔法

3.2.3垂直浮带区熔法

3.2.4区熔法制备单晶硅的工业流程及具体步骤

3.3 单晶硅制备需要进行的技术改进

4、单晶硅的发展前景

5、参考文献

1、摘要

单晶硅是一种比较活泼的非金属元素,是晶体材料的重要组成部分,一直处于新能源发展的前沿。主要用于半导体材料和太阳能光伏产业。近些年由于太阳能光伏产业的飞速发展,也带动了硅行业的持续,快速发展。

熔融的单质硅在凝固时硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则这些晶粒平行结合起来便结晶成单晶硅。单晶硅具有准金属的物理性质,有较弱的导电性,其电导率随温度的升高而增加,有显著的半导电性。超纯的单晶硅是本征半导体。在超纯单晶硅中掺入微量的ⅢA族元素,如硼可提高其导电的程度,而形成p型硅半导体;如掺入微量的ⅤA族元素,如磷或砷也可提高导电程度,形成n型硅半导体。单晶硅的制法通常是先制得多晶硅或无定形硅,然后用直拉法或悬浮区熔法从熔体中生长出棒状单晶硅。单晶硅主要用于制作半导体元件[1]。

关键词: 光伏; 单晶硅; 太阳能电池; 工艺

2、绪论

2.1 单晶硅简介:

单晶硅,是硅的单晶体,具有基本完整的点阵结构的晶体,不同的方向具有不同的性质,是一种良好的半导材料,纯度要求达到99.9999%,甚至达到99.9999999%以上。用于制造半导体器件、太阳能电池等,用高纯度的多晶硅在单晶炉内拉制而成。

熔融的单质硅在凝固时硅原子以金刚石晶格排列成许多晶核,如果这些晶核

长成晶面取向相同的晶粒,则这些晶粒平行结合起来便结晶成单晶硅。

单晶硅是一种比较活泼的非金属元素,是晶体材料的重要组成部分,处于新材料发展的前沿。其主要用途是用作半导体材料和利用太阳能光伏发电、供热等。由于太阳能具有清洁、环保、方便等诸多优势,近三十年来,太阳能利用技术在研究开发、商业化生产、市场开拓方面都获得了长足发展,成为世界快速、稳定发展的新兴产业之一[2]。

2.2 国内外技术介绍

日本、美国和德国是主要的硅材料生产国。中国硅材料工业与日本同时起步,但总体而言,生产技术水平仍然相对较低,而且大部分为2.5.3.4.5英寸硅锭和小直径硅片。中国消耗的大部分集成电路及其硅片仍然依赖进口。但我国科技人员正迎头赶上,于1998年成功地制造出了12英寸单晶硅,标志着我国单晶硅生产进入了新的发展时期。目前,全世界单晶硅的产能为1万吨/年,年消耗量约为6000吨~7000吨。未来几年中,世界单晶硅材料发展将呈现以下发展趋势:

(1).微型化

随着半导体材料技术的发展,对硅片的规格和质量也提出更高的要求,适合微细加工的大直径硅片在市场中的需求比例将日益加大。

(2).国际化,集团化,集中化

研发及建厂成本的日渐增高,加上现有行销与品牌的优势,使得硅材料产业形成“大者恒大”的局面,少数集约化的大型集团公司垄断材料市场。

(3).硅基材料

随着光电子和通信产业的发展,硅基材料成为硅材料工业发展的重要方向。硅基材料是在常规硅材料上制作的,是常规硅材料的发展和延续,其器件工艺与硅工艺相容。

(4).硅片制造技术进一步升级

半导体,芯片集成电路,设计版图,芯片制造,工艺目前世界普遍采用先进的切、磨、抛和洁净封装工艺,使制片技术取得明显进展。

2.3 用途:

单晶硅具有金刚石晶格,晶体硬而脆,具有金属光泽,能导电,但导电率不及金属,且随着温度升高而增加,具有半导体性质。单晶硅是重要的半导体材料。在单晶硅中掺入微量的第ЩA族元素,形成P型半导体,掺入微量的第VA族元素,形成N型,N型和P型半导体结合在一起,就可做成太阳能电池,将辐射能转变为电能。

单晶硅是制造半导体硅器件的原料,用于制大功率整流器、大功率晶体管、二极管、开关器件等。在开发能源方面是一种很有前途的材料。单晶硅棒是生产单晶硅片的原材料,随着国内和国际市场对单晶硅片需求量的快速增加,单晶硅棒的市场需求也呈快速增长的趋势。

单晶硅圆片按其直径分为6英寸、8英寸、12英寸(300毫米)及18英寸(450毫米)等。直径越大的圆片,所能刻制的集成电路越多,芯片的成本也就越低。但大尺寸晶片对材料和技术的要求也越高。单晶硅按晶体生长方法的不同,分为直拉法(CZ)、区熔法(FZ)和外延法。直拉法、区熔法生长单晶硅棒材,外延法生长单晶硅薄膜。直拉法生长的单晶硅主要用于半导体集成电路、二极管、外延片衬底、太阳能电池[3]。目前晶体直径可控制在Φ3~8英寸。区熔法单晶主要用于高压大功率可控整流器件领域,广泛用于大功率输变电、电力机车、整流、变频、机电一体化、节能灯、电视机等系列产品。目前晶体直径可控制在Φ3~6英寸。外延片主要用于集成电路领域。

3、制备方法

3.1直拉法

3.1.1.直拉法基本原理和基本过程如下:

直拉法是用的最多的一种晶体生长技术。

(1).引晶:通过电阻加热,将装在石英坩埚中的多晶硅熔化,并保持略高于硅熔点的温度,将籽晶浸入熔体,然后以一定速度向上提拉籽晶并同时旋转引出晶体;

(2).缩颈:生长一定长度的缩小的细长颈的晶体,以防止籽晶中的位错延伸到晶体中;放肩:将晶体控制到所需直径;

(3).等径生长:根据熔体和单晶炉情况,控制晶体等径生长到所需长度;

(4).收尾:直径逐渐缩小,离开熔体;

(5).降温:降级温度,取出晶体,待后续加工

(6).最大生长速度:晶体生长最大速度与晶体中的纵向温度梯度、晶体的热导率、晶体密度等有关。 提高晶体中的温度梯度,可以提高晶体生长速度;但温度梯度太大,将在晶体中产生较大的热应力,会导致位错等晶体缺陷的形成,甚至会使晶体产生裂纹。为了降低位错密度,晶体实际生长速度往往低于最大生长速度。

(7).熔体中的对流:相互相反旋转的晶体(顺时针)和坩埚所产生的强制对流是由离心力和向心力、最终由熔体表面张力梯度所驱动的。

(8).生长界面形状(固液界面):固液界面形状对单晶均匀性、完整性有重要影响,正常情况下,固液界面的宏观形状应该与热场所确定的熔体等温面相吻合。通过调整拉晶速度,晶体转动和坩埚转动速度就可以调整固液界面形状[4]。

(9).连续生长技术:为了提高生产率,节约石英坩埚(在晶体生产成本中占相当比例),发展了连续直拉生长技术,主要是重新装料和连续加料两中技术:重新加料直拉生长技术:可节约大量时间(生长完毕后的降温、开炉、装炉等),一个坩埚可用多次。连续加料直拉生长技术有两种加料法:连续固体送料和连续液体送料法。

(10).液体覆盖直拉技术:是对直拉法的一个重大改进,用此法可以制备多种含有挥发性组元的化合物半导体单晶。主要原理:用一种惰性液体(覆盖剂)覆盖被拉 制材料的熔体,在晶体生长室内充入惰性气体,使其压力大于熔体的分解压力,以抑制熔体中挥发性组元的蒸发损失,这样就可按通常的直拉技术进行单晶生长。

3.1.2直拉法-技术改进

(1)磁控直拉技术

a.在直拉法中,氧含量及其分布是非常重要而又难于控制的参数,主要是熔体中的热对流加剧了熔融硅与石英坩锅的作用,即坩锅中的O2,、B、Al等杂质易于进入熔体和晶体。热对流还会引起熔体中的温度波动,导致晶体中形成杂质条纹和旋涡缺陷[5]。

b.半导体熔体都是良导体,对熔体施加磁场,熔体会受到与其运动方向相反的洛伦兹力作用,可以阻碍熔体中的对流,这相当于增大了熔体中的粘滞性。在生产中通常采用水平磁场、垂直磁场等技术。

c.磁控直拉技术与直拉法相比所具有的优点在于:减少了熔体中的温度波度。一般直拉法中固液界面附近熔体中的温度波动达10 C以上,而施加0.2 T的

磁场,其温度波动小于1 ℃。 这样可明显提高晶体中杂质分布的均匀性,晶体的径向电阻分布均匀性也可以得到提高;降低了单晶中的缺陷密度;减少了杂质的进入,提高了晶体的纯度。这是由于在磁场作用下,熔融硅与坩锅的作用减弱,使坩锅中的杂质较少进入熔体和晶体。将磁场强度与晶体转动、坩锅转 动等工艺参数结合起来,可有效控制晶体中氧浓度的变化;由于磁粘滞性,使扩散层厚度增大,可提高杂质纵向分布均匀性; 有利于提高生产率。采用磁控直拉技 术,如用水平磁场,当生长速度为一般直拉法两倍时,仍可得到质量较高的晶体。 d.磁控直拉技术主要用于制造电荷耦合(CCD)器件和一些功率器件的硅单晶。也可用于GaAs、GaSb等化合物半导体单晶的生长。

(2) 连续生长技术

为了提高生产率,节约石英坩埚(在晶体生产成本中占相当比例),发展了连续直拉生长技术,主要是重新装料和连续加料两中技术:

a.重新加料直拉生长技术:可节约大量时间(生长完毕后的降温、开炉、装炉等),一个坩埚可用多次。

b.连续加料直拉生长技术:除了具有重新装料的优点外,还可保持整个生长过程中熔体的体积恒定,提高基本稳定的生长条件,因而可得到电阻率纵向分布均匀的单晶。连续加料直拉生长技术有两种加料法:连续固体送料和连续液体送料法。

(3) 液体覆盖直拉技术

是对直拉法的一个重大改进,用此法可以制备多种含有挥发性组元的化合物半导体单晶。主要原理:用一种惰性液体(覆盖剂)覆盖被拉制材料的熔体,在晶体生长室内充入惰性气体,使其压力大于熔体的分解压力,以抑制熔体中挥发性组元的蒸发损失,这样就可按通常的直拉技术进行单晶生长。

对惰性液体(覆盖剂)的要求:

a.密度小于所拉制的材料,既能浮在熔体表面之上;对熔体和坩埚在化学上必须是惰性的,也不能与熔体混合,但要能浸云晶体和坩埚;熔点要低于被拉制的材料且蒸气压很低;

b.有较高的纯度,熔融状态下透明。广泛使用的覆盖剂为B2O3: 密度1.8 g/cm3,软化温度450C,在1300 C时蒸气压仅为13 Pa, 透明性好,粘滞性也好。此种技术可用于生长GaAs、InP、 GaP、 GaSb和InAs等单晶。

3.2 区熔法

区熔法又分为两种:水平区熔法和悬浮区熔法。前者主要用于锗、GaAs等材料的提纯和单晶生长。后者主要用于硅,这是由于硅熔体的温度高,化学性能活泼,容易受到异物的玷污,难以找到适合的器皿,不能采用水平区熔法。然而硅又具有两个比锗、GaAs优越的特性:即密度低(2.33g/cm3和表面张力大(0.0072N/cm),所以,能用无坩埚悬浮区熔法。该法是在气氛或真空的炉室中,利用高频线圈在单晶籽晶和其上方悬挂的多晶硅棒的接触处产生熔区,然后使熔区向上移动进行单晶生长。由于硅熔体完全依靠其表面张力和高频电磁力的支托,悬浮于多晶棒与单晶之间,故称为悬浮区熔法[6]。

3.2.1.悬浮区熔法

熔区悬浮的稳定性很重要,稳定熔区的力主要是熔体的表面张力和加热线圈提供的磁浮力,而造成熔区不稳定的力主要是熔硅的重力和旋转产生的离心力。要熔区稳定地悬浮在硅棒上,前两种力之和必须大于后两种力之和。用中子嬗变掺杂方法,就能获得电阻率高、均匀性好的硅单晶。可用于高电压大功率器件上,

如可控硅、可关断晶闸管等。这些器件被广泛地用在近代的电力机车、轧钢机、冶金设备、自动控制系统以及高压输配电系统中。来生长单晶体的方法。将棒状多晶锭熔化一窄区,其余部分保持固态,然后使这一熔区沿锭的长度方向移动,使整个晶锭的其余部分依次熔化后又结晶。区熔法可用于制备单晶和提纯材料,还可得到均匀的杂质分布。这种技术可用于生产纯度很高的半导体、金属、合金、无机和有机化合物晶体(纯度可达10-6~10-9)。在头部放置一小块单晶即籽晶,并在籽晶和原料晶锭相连区域建立熔区,移动晶锭或加热器使熔区朝晶锭长度方向不断移动。区域熔化法是按照分凝原理进行材料提纯的。杂质在熔体和熔体内已结晶的固体中的溶解度是不一样的。在结晶温度下,若一杂质在某材料熔体中的浓度为cL,结晶出来的固体中的浓度为cs,则称K=cL/cs为该杂质在此材料中的分凝系数。

3.2.2 水平区熔法

主要用于锗、GaAs等材料的提纯和单晶生长将原料放入一长舟之中,舟应采用不沾污熔体的材料制成,如石英、氧化镁、氧化铝、氧化铍、石墨等。舟的头部放籽晶。加热可以使用电阻炉,也可使用高频炉。用此法制备单晶时,设备简单,与提纯过程同时进行又可得到纯度很高和杂质分布十分均匀的晶体。但因与舟接触,难免有舟成分的沾污,且不易制得完整性高的大直径单晶。

3.2.3 垂直浮带区熔法

用此法拉晶时,先从上、下两轴用夹具精确地垂直固定棒状多晶锭。用电子轰击、高频感应或光学聚焦法将一段区域熔化,使液体靠表面张力支持而不坠落。移动样品或加热器使熔区移动。此外,区熔硅的生长速度超过约5~6毫米/分时,还可以阻止所谓漩涡缺陷的生成。为确保生长沿所要求的晶向进行,也需要使用籽晶,采用与直拉单晶类似的方法,将一个很细的籽晶快速插入熔融晶柱的顶部,先拉出一个直径约3mm,长约10-20mm的细颈,然后放慢拉速,降低温度放肩至较大直径。顶部安置籽晶技术的困难在于,晶柱的熔融部分必须承受整体的重量,而直拉法则没有这个问题,因为此时晶定还没有形成。

用区熔法单晶生长技术制备的半导体硅材料,是重要的硅单晶产品。由于硅熔体与坩埚容器起化学作用,而且利用硅表面张力大的特点,故采用悬浮区熔法,简称FZ法或FZ单晶[7]。

工艺特点大直径生长,比直拉硅单晶困难得多,要克服的主要问题是熔区的稳定性。这可用“针眼技术”解决,在FZ法中这是一项重大成就。另一项重大成就是中子嬗变掺杂。利用中子嬗变掺杂可获得掺杂浓度很均匀的区熔硅(简称NTD硅),从而促进了大功率电力电子器件的发展与应用。区熔硅的常规掺杂方法有硅芯掺杂、表面涂敷掺杂、气相掺杂等,以气相掺杂最为常用。晶体缺陷区熔硅中的晶体缺陷有位错和漩涡缺陷。中子嬗变晶体还有辐照缺陷,在纯氢或氩一氢混合气氛中区熔时,常引起氢致缺陷。其中漩涡缺陷有A、B、C和D四种,其特性及易出现的主要条件列于表1。

漩涡缺陷有害,它使载流子寿命下降,进而导致器件特性劣化。在器件工艺

中它可转化为位错、层错及形成局部沉淀,从而造成微等离子击穿或使PN结反向电流增大。这种缺陷不仅使高压大功率器件性能恶化,而且使CCD产生暗电流尖峰。在单晶制备过程中减少漩涡缺陷的措施有尽量降低碳含量、提高拉晶速度等。90年代的水平90年代以来达到的是:区熔硅单晶的最大直径为150mm,并已商品化,直径200mm的产品正在试验中。晶向一般为。

(1)气相掺杂区熔硅单晶。N型掺磷、P型掺硼。无位错、无漩涡缺陷。碳浓度[C。]

漩涡缺陷有害,它使载流子寿命下降,进而导致器件特性劣化。在器件工艺中它可转化为位错、层错及形成局部沉淀,从而造成微等离子击穿或使PN结反向电流增大。这种缺陷不仅使高压大功率器件性能恶化,而且使CCD产生暗电流尖峰。在单晶制备过程中减少漩涡缺陷的措施有尽量降低碳含量、提高拉晶速度等。90年代的水平90年代以来达到的是:区熔硅单晶的最大直径为150mm,并已商品化,直径200mm的产品正在试验中。晶向一般为。

(1)气相掺杂区熔硅单晶。N型掺磷、P型掺硼。无位错、无漩涡缺陷。碳浓度[C。]

(2) 中子嬗变掺杂(NTD)硅单晶。N型掺杂元素磷,无位错、无漩涡缺陷。碳浓度[C。]

3.2.4 区熔法制备单晶硅的工业流程及具体步骤:

主要用于提纯和生长硅单晶;其基本原理是:依靠熔体的表面张力,使熔区悬浮于多晶硅 棒与下方生长出的单晶之间,通过熔区向上移动而进行提纯和生长单晶。

区熔法制备单晶硅具有如下特点:

1.不使用坩埚,单晶生长过程不会被坩埚材料污染

2.由于杂质分凝和蒸发效应,可以生长出高电阻率硅单晶

单晶硅建设项目具有巨大的市场和广阔的发展空间。在地壳中含量达25.8%的硅元素,为单晶硅的生产提供了取之不尽的源泉。近年来,各种晶体材料,特别是以单晶硅为代表的高科技附加值材料及其相关高技术产业的发展,

成为当代

信息技术产业的支柱,并使信息产业成为全球经济发展中增长最快的先导产业。单晶硅作为一种极具潜能,亟待开发利用的高科技资源,正引起越来越多的关注和重视。与此同时,鉴于常规能源供给的有限性和环保压力的增加,世界上许多国家正掀起开发利用太阳能的热潮并成为各国制定可持续发展战略斩重要内容。 在跨入21世纪门槛后,世界大多数国家踊跃参与以至在全球范围掀起了太阳能开发利用的“绿色能源热”,一个广泛的大规模的利用太阳能的时代正在来临,太阳能级单晶硅产品也将因此炙手可热[9]。

4、单晶硅的发展前景

单晶硅是电力工业的粮食。基于区熔硅片的电力电子技术的飞速发展被称为“硅片引起的第二次革命”。 近年来,区熔硅单晶开始进入绿色能源领域。国际上利用区熔单晶硅制作太阳能电池技术逐渐成熟,使用区熔硅制作太阳能电池,其光电转换效率达到20%,其综合性价比超过直拉单晶硅太阳能电池(光电转换效率为12%)和多晶硅太阳能电池(光电转换效率为10%)。这个用途将极大地扩展区熔硅单晶的市场空间,这是区熔单晶硅最大的新兴市场。最近,区熔硅单晶更是进入了信息、通讯领域,被用来制造射频集成电路、微波单片集成电路(MMIC)和光电探测器等高端微电子器件。 磁场直拉硅单晶(MCZ)是指利用磁场拉晶装置模仿空间微重力环境制备的单晶硅。MCZ硅普遍用来制作集成电路和分立器件。重要的是,MCZ硅单晶的原料可以使用区熔单晶的头尾料以及不合格单晶,这样就可以充分、有效地利用宝贵的原料资源,同时增加产值和利润[8]。

5、参考文献

[1] 黄亚平.太阳能光伏发电研究现状与发展前景探讨 [J] 广东白云学院学

报.2007,2(14):113- 117

[2] 赵玉文,王斯成,王文静.中国光伏产业发展研究报告((2006 - 2007)[R],北京:国家

发展与改革委员会/全球环境基金/世界银行,2008: 3-20

[3] 沈辉,曾祖勤.太阳能光伏发电技术〔M].北京:化学工业出版社,2005: 45-54

[4] 杨金焕,于化从,葛亮.太阳能光伏发电应用技术[M].北京版社,2009: 106-109

[5] 赵玉文.21世纪我国太阳能利用发展趋势[J].中国电力,2000,33(9): 73-77

[6] Song X,Reynaerts D, Meeusen W, Brussel H V. Astudy on the elimination of

micro-cracks in a sparked silicon surface [J]. SensActuators A2001;92:

286-291.

[7] Panek P, Lipiński M, Dutkiewicz J. Texturization of multi-crystalline silicon by wet chemical etching for silicon solar cells[J], Journal Of Materials

Science, 2005, 40: 1459-1463.

[8] 韩宏伟,博士学位论文,104860631,武汉: 武汉大学.

[9] 林鹏,张志峰等,光电子技术,2004. 3: Vol. 24. No. 1:55一60.


相关内容

  • 太阳能光伏发电材料的发展现状
    第26卷第5期2008年10月 可再生能源 RenewableEnergy Resources V01.26No.50ct.2008 太阳能光伏发电材料的发展现状 殷志刚 (辽宁太阳能研究应用有限公司,辽宁沈阳 摘 110034) 要:对太 ...
  • 晶硅太阳能电池生产工艺
    晶硅太阳能电池生产工艺.txt39人生旅程并不是一帆风顺的,逆境 失意会经常伴随着我们,但人性的光辉往往在不如意中才显示出来,希望是激励我们前进的巨大的无形的动力.40奉献是爱心,勇于付出,你一定会收到意外之外的馈赠. 本文由小萝卜123贡 ...
  • 硅系列精工产品高纯石英砂生产工艺
    硅系列高纯石英砂(单晶硅)生产工艺 技术科长:刘 德 金 (一九八五年二月) 硅系列(单晶硅)产品生产控制.设备与要求 1. 高纯石英砂的用途和发展前景 2. 刘德金同志简历和新产品研发成果 3. 高纯精制产品检验方法和手续 4. 使用检验 ...
  • 论文格式sample新能源技术A
    华北电力大学 成人教育学院 业 设 计 专 业 班 级 xxxxx 学生姓名 xxx 指导教师 xxx 年 月 日 毕 华北电力大学 成教学院 届毕业设计(论文)任务书 教研室主任签名: 学 生 签 名: 摘要 新能源是二十一世纪世界经济发 ...
  • 时金安_0835002_半导体纳米材料
    凝聚态物理课程期末论文 半导体纳米材料的实验进展 姓 名: 时金安 学 号: 0835002 班 级: 理学院应用物理 2011年6月6日 半导体纳米材料的研究是当代科学技术的前沿.由于它具有不同于体材料的光学非线性和发光性质, 在未来光开 ...
  • 数种蓝宝石晶体生长方法
    蓝宝石晶体的生长方法 自1885年由Fremy.Feil和Wyse利用氢氧火焰熔化天然红宝石粉末与重铬酸钾而制成了当时轰动一时的"日内瓦红宝石",迄今人工生长蓝宝石的研究已有100多年的历史.在此期间,为了适应科学技术的 ...
  • 石墨烯的制备及其复合材料热性质
    阻燃论文 题目:石墨烯的制备及其复合材料热性质 报告人:姓名 学号 班级 指导教师: 石墨烯制备及其复合材料热性质 摘要:本文对石墨烯进行了概述,并简要介绍了其制备方法.并对其改性环氧树脂的热性能进行了表征. 关键词:石墨烯,制备,热性能: ...
  • 石墨烯应用
    硕士学位论文 功能化石墨烯的制备.结构分析及其PVB纳米复合膜研究 作 学 指 所者科导在姓专教学名业师院周俊文材料学马文石副研究员材料科学与工程学院 2011年5月论文提交日期 Preparation,StructuralAnalysis ...
  • 有机太阳能电池能量转化效率的提高思路
    第31卷,第5期20I1年5月 光谱学与光谱分析 SpectroscopyandSpectralAnalysis V01.31,No.5.ppll61・1167 May,2011 有机太阳能电池能量转化效率的提高思路 木丽萍1'2,袁 丹2 ...