控制系统的滞后-超前校正设计 - 范文中心

控制系统的滞后-超前校正设计

05/04

课 程 设 计

题 目: 控制系统的滞后-超前校正设计 初始条件:已知一单位反馈系统的开环传递函数是

G (s ) =

K

s (s +1)(s +2)

要求系统的静态速度误差系数K v ≥10S -1,相角裕度γ≥45 。

要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)

(1) 用MATLAB 画出满足初始条件的最小K 值的系统伯德图,计算系统的幅值裕度和相角裕度。 (2) 前向通路中插入一相位滞后-超前校正,确定校正网络的传递函数。 (3) 用MATLAB 画出未校正和已校正系统的根轨迹。

(4) 用Matlab 画出已校正系统的单位阶跃响应曲线、求出超调量、峰值时间、调节时间及稳

态误差。

(5) 课程设计说明书中要求写清楚计算分析的过程,列出MATLAB 程序和MATLAB 输出。说明

书的格式按照教务处标准书写。

时间安排:

指导教师签名: 年 月 日 系主任(或责任教师)签名: 年 月 日

目录 ................................................................................................................... I 摘要 ................................................................................................................. II 1设计题目和设计要求 ................................................................................... 1

1.1题目 ............................................................................................................... 1 1.2初始条件 ....................................................................................................... 1 1.3设计要求 ....................................................................................................... 1 1.4主要任务 ....................................................................................................... 1

2设计原理 ....................................................................................................... 2

2.1滞后-超前校正原理 . ..................................................................................... 2

3设计方案 ....................................................................................................... 4

3.1校正前系统分析 . .......................................................................................... 4

3.1.1确定未校正系统的K 值 ......................................................................................... 4 3.1.2未校正系统的伯德图和单位阶跃响应曲线和根轨迹 . ......................................... 4 3.1.3未校正系统的相角裕度和幅值裕度 . ..................................................................... 7

3.2方案选择 ....................................................................................................... 7

4设计分析与计算 ........................................................................................... 8

4.1校正环节参数计算 . ...................................................................................... 8

4.1.1已校正系统截止频率ωc 的确定 . ............................................................................ 8 4.1.4校正环节滞后部分交接频率ωa 的确定 . ................................................................ 8 4.1.1校正环节超前部分交接频率ωb 的确定 . ................................................................ 8

4.2校正环节的传递函数 . .................................................................................. 8 4.3已校正系统传递函数 . .................................................................................. 9

5已校正系统的仿真波形及仿真程序 ......................................................... 10

5.1已校正系统的根轨迹 . ................................................................................ 10 5.2已校正系统的伯德图 . ................................................................................ 11 5.3已校正系统的单位阶跃响应曲线 . ............................................................ 12

6结果分析 ..................................................................................................... 13 7总结与体会 ................................................................................................. 14 参考文献 ........................................................................................................ 14 本科生课程设计成绩评定表 . ....................................... 错误!未定义书签。

《自动控制原理》在工程应用中有了不可缺少作用,拥有非常重要的地位,一个理想的控制系统更是重要。然而,理想的控制系统是难以实现的。要想拥有一个近乎理想的控制系统,就得对设计的控制系统进行校正设计。对于一个控制系统,要想知道其的性能是否满足工程应用的要求,就得对系统进行分析。对性能指标不满足要求的系统必须对其校正,目前常用的无源串联校正方法有超前校正、滞后校正和滞后-超前校正。滞后-超前校正方法融合了超前和滞后校正的特点,具有更好的校正性能。在校正设计过程中需要利用仿真软件MATLAB 绘制系统的伯德图、根轨迹和单位阶跃响应曲线以获得系统的相关参数。在本文中采用的滞后-超前校正设计校正了不稳定系统,使校正后的系统变得稳定且满足了性能指标要求,达到了校正的目的。

关键字:滞后-超前、系统校正、

控制系统的滞后-超前校正设计

1设计题目和设计要求

1.1题目

控制系统的滞后-超前校正设计

1.2初始条件

已知一单位反馈系统的开环传递函数是

G (s ) =

K

s (s +1)(s +2)

1.3设计要求

要求系统的静态速度误差系数K v ≥10S -1,相角裕度γ≥45 。

1.4主要任务

1)用MATLAB 画出满足初始条件的最小K 值的系统伯德图,计算系统的幅值裕度和相角裕度。

2)向通路中插入一相位滞后-超前校正,确定校正网络的传递函数。 3)用MATLAB 画出未校正和已校正系统的根轨迹。

4)用Matlab 画出已校正系统的单位阶跃响应曲线、求出超调量、峰值时间、调节时间及稳态误差。

5)课程设计说明书中要求写清楚计算分析的过程,列出MATLAB 程序和MATLAB 输出。

2设计原理

系统校正,就是在系统中加入一些机构或装置,使系统整个性能发生改变,改善系统的各项性能指标,从而满足给定的性能指标要求。插入系统的机构或装置其参数可根据校正前系统的需要来设计校正环节的结构参数,从而达到校正系统的目的。

校正环节分为无源校正和有源校正。常用的无源校正环节有滞后校正、超前校正、滞后-超前校正这三种类型。本文主要采用滞后-超前校正。

2.1滞后-超前校正原理

无源滞后-超前校正网络的电路图如图2-1所示。由并联的R 1和C 1和串联的R 2和C 2组成滞后-超前网络。

图2-1 无源滞后-超前校正网络电路图

其传递函数为:

Gc(S)=

(1+Ta s)(1+Tb s ) T a T b s +(Ta +Tb +Tab ) s+1

2

(2-1)

式中:T =R 1C 1 TC 2 b =R 2C 2 Ta ab =R 1经过化简后可得:

G C (S ) =

(1+T a s )(1+T b s ) (1+aT a s )(1+

T b

s ) a

(2-2)

其中,(1+T a s +aT a s ) 是校正网络的滞后部分,(1+T b s 1+T b s ) 是校正网络的超前部分。无源滞后-超前网络的对数幅频渐近特性曲线如图2-2所示,其低频部分和高频部分均起始于和终止于0dB 水平线。从图中可知,只要确定ωa , ωb , 和a ,或者确定T a , Tb , 和a 三个独立的变量,校正网络的对数幅频渐近线的形状和传递函数就可以确定。

图2-2 无源滞后-超前网络对数幅频特性曲线

滞后-超前校正环节同时具有滞后校正和超前校正的优点,即已校正系统响应速度较快,超调量较小,抑制高频噪声的性能也较好。当待校正系统不稳定,且要求校正后系统的响应速度、相位裕度和稳态精度较高时,采用滞后-超前校正为宜。其基本原理是利用滞后-超前网络的超前部分来增大系统的相位裕度,同时利用滞后部分来改善系统的稳态性能。

采用解析法的滞后-超前校正的设计步骤如下: (1)根据稳态性能要求确定开环增益K 。

(2)绘制未校正系统的对数频率特性曲线,求出开环截止频率、相角裕度、幅值裕度;

(3)在未校正系统对数频率特性曲线上,选择一频率作为校正后的截止频率ωc ,使

∠G (j ωc )=-180︒,要求的相角裕度将由校正网络的超前部分补偿; 0

(4)计算需要补偿的相角ϕm =γ+5︒,并由α=1+sin ϕm -sin ϕm 确定值α; (5)选择校正网络滞后部分的零点a =0.1ωc ;

(6)跟据未校正系统在ωc 处的分贝值,由0(jωc ωc T b =1得出T b (7)由上述参数确定校正环节的传递函数和校正后系统的传递函数

(8)将得到的数据与设计要求对比,如符合要求,则设计成功,否则,就需要调整滞后部分的相关参数,得到新的滞后部分传递函数,直至符合设计要求为止。

3设计方案

在选择合适的校正方案之前,应先计算系统的相关参数和对系统的稳定性判断。判定方法是用MATLAB 画出未校正系统的伯德图,算出未校正系统的相角裕度和幅值裕度,根据计算结果判别系统是否稳定以及选定合适的校正方案。

3.1校正前系统分析

3.1.1确定未校正系统的K 值

由静态速度误差系数的定义:

K V =lim sG (s ) =lim

s →0

s →0

K

(s +1)(s +2)

=

K

2

(3-1)

根据任务设计要求系统的静态速度误差系数K v ≥10S -1可得:K=20S -1, 于是可得待校正系统的开环传递函数为:

G (s ) =

20

(3-2)

s (s +1)(s +2)

3.1.2未校正系统的伯德图和单位阶跃响应曲线和根轨迹

1)绘制未校正系统的伯德图程序如下,未校正系统伯德图如图3-1所示。

思路:定义三个变量num2,den2,sys2分别保存系统K 值、传递函数分母多项式的乘积和系统传递函数的结果。最后调用margin 函数画出系统伯德图,并且画出网格。从图上即可读出相角裕度和幅值裕度。

num2=10;

den2=conv(conv([1,0],[1,1]),[0.5,1]); sys2=tf(num2,den2); margin(sys2) grid on

title(' 未校正系统伯德图' )

2)绘制未校正系统的单位阶跃响应曲线程序如下,单位阶跃响应曲线如图3-2所示。 思路:定义三个变量num2,den2,sys2分别保存系统K 值、传递函数分母多项式的乘积和系统传递函数的结果。在调用feedback 函数计算系统的单位阶跃响应并保存在变量sys2_step中。最后调用step 函数画出系统的单位阶跃响应曲线,并且画出网格。从图上即

可观察系统的单位阶跃响应。

num2=10;

den2=conv(conv([1,0],[1,1]),[0.5,1]); sys2=tf(num2,den2); sys2_step=feedback(sys2,1); step(sys2_step) grid on

图3-1 未校正系统伯德图

3)绘制未校正系统的根轨迹曲线程序如下,单位阶跃响应曲线如图3-3所示。 思路:定义三个变量num2,den2,sys2分别保存系统K 值、传递函数分母多项式的乘积和系统传递函数的结果。最后调用rlocus 函数画出系统根轨迹。

num2=10;

den2=conv(conv([1,0],[1,1]),[0.5,1]); sys2=tf(num2,den2); rlocus(sys2) hold on

图3-2 未校正系统的单位阶跃响应曲线

图3-3 未校正系统的根轨迹

3.1.3未校正系统的相角裕度和幅值裕度

未校正系统伯德图如图3-1所示,从图中可得出未校正系统的穿越频率为1.41rad/s,对应的幅值裕度为-10.5dB ,截止频率为2.43rad/s,对应的相角裕度为-28.1°。由于相角裕度小于零,幅值裕度小于1为负值,说明未校正系统不稳定。从图3-2更加直观的看出未校正系统的动态性能,未校正系统的单位阶跃响应曲线呈发散震荡形式,系统严重不稳定。

3.2方案选择

由计算的幅值裕度和相角裕度可知原系统是不稳定的,根据任务设计要求要使校正后的系统的相角裕度γ≥45 ,所以本文采用滞后-超前校正设计,增大系统的相角裕度,同时改善系统的稳态性能。

4设计分析与计算

4.1校正环节参数计算

根据给定的系统性能指标结合计算出来的未校正系统的截止频率、幅值裕度和相角裕度,按照滞后-超前校正的设计步骤,确定出校正环节参数。

4.1.1已校正系统截止频率ωc 的确定

为了降低系统的阶次,且保证中频区斜率为-20dB/dec且占有较宽的频带,由

得 ∠G 0(ωC ) =-180

90︒+arctanωc +arctan 0.5ωc =180︒ (4-1)

解得:ωc =1.41rad 取ωc =1.50rad

4.1.4校正环节滞后部分交接频率ωa 的确定

任务设计要求γ≥45 ,为保证校正后的系统满足要求,取γ=45 由ϕm =γ+5︒=45︒+5︒=50︒得:

1+sin ϕm 1+sin 50︒

α===7.55

1-sin ϕm 1-sin 50︒

所以由a =0.1ωc 得:

T a =

11

==6.67s

0.1ωc 0.1⨯1.5

所以: ωa =a =0. 1rad 5

4.1.1校正环节超前部分交接频率ωb 的确定

由G 0(j ωc T b ωc

=1得: α

T b =

αωc 7.55⨯1.50

==1.13s K 10

所以:

ωb =b =0.58rad

4.2校正环节的传递函数

把上述计算得到的结果带入式(2-2)可得校正环节的传递函数:

G C (S ) =

(1+6.67s )(1+1.13s )

(4-2)

(1+50.36s )(1+0.15s )

4.3已校正系统传递函数

把式(3-2)未校正系统的传递函数和式(4-2)校正环节的传递函数相乘即可得到已校正系统的传递函数:

G (S ) =

10(1+6.67s )(1+1.13s )

s (s +1)(0.5s +1)(1+50.36s )(1+0.15s )

根据计算的参数可知,校正后系统的截止频率为ωc =1.5rad 。

4-3)

5已校正系统的仿真波形及仿真程序

5.1已校正系统的根轨迹

绘制已校正系统的根轨迹曲线程序如下,校正后系统的根轨迹如图6-1所示。 思路:定义三个变量num1,den1,sys1分别保存校正环节的分子多项式的乘积、校正环节分母多项式的乘积和校正环节传递函数的计算结果。定义三个变量num2,den2,sys2分别保存未校正系统分子多项式的乘积、未校正系统分母多项式的乘积和未校正系统传递函数的计算结果。用sys3保存校正后的系统的传递函数的计算结果。调用rlocus 函数画出校正后系统根轨迹。

num1=conv([6.67,1],[1.13,1]); den1=conv([50.36,1],[0.15,1]); sys1=tf(num1,den1); num2=10;

den2=conv(conv([1,0],[1,1]),[0.5,1]); sys2=tf(num2,den2); sys3=series(sys1,sys2); rlocus(sys3)

hold on

图6-1 已校正系统的根轨迹

5.2已校正系统的伯德图

绘制已校正系统的伯德图程序如下,校正后系统的伯德图如图6-2所示。

思路:定义三个变量num1,den1,sys1分别保存校正环节的分子多项式的乘积、校正环节分母多项式的乘积和校正环节传递函数的计算结果。定义三个变量num2,den2,sys2分别保存未校正系统分子多项式的乘积、未校正系统分母多项式的乘积和未校正系统传递函数的计算结果。用sys3保存校正后的系统的传递函数的计算结果。最后调用margin 函数画出系统伯德图,并且画出网格。从图上即可读出校正后系统的相角裕度和幅值裕度。

num1=conv([6.67,1],[1.13,1]); den1=conv([50.36,1],[0.15,1]); sys1=tf(num1,den1); num2=10;

den2=conv(conv([1,0],[1,1]),[0.5,1]); sys2=tf(num2,den2); sys3=series(sys1,sys2); margin(sys3)

grid on

图6-2 已校正系统的伯德图

5.3已校正系统的单位阶跃响应曲线

绘制已校正系统的单位阶跃响应曲线程序如下,单位阶跃响应曲线如图6-3所示。 思路:定义三个变量num1,den1,sys1分别保存校正环节的分子多项式的乘积、校正环节分母多项式的乘积和校正环节传递函数的计算结果。定义三个变量num2,den2,sys2分别保存未校正系统分子多项式的乘积、未校正系统分母多项式的乘积和未校正系统传递函数的计算结果。用sys3保存校正后的系统的传递函数的计算结果。用feedback 函数计算校正后系统的单位阶跃响应并将结果保存在变量sys3_step中,最后调用step 函数画出系统的单位阶跃响应曲线,并且画出网格。从图上即可观察系统的单位阶跃响应以及校正后系统时域的性能参数。

num1=conv([6.67,1],[1.13,1]); den1=conv([50.36,1],[0.15,1]); sys1=tf(num1,den1); num2=10;

den2=conv(conv([1,0],[1,1]),[0.5,1]); sys2=tf(num2,den2); sys3=series(sys1,sys2); sys3_step=feedback(sys3,1);

step(sys3_step)

图6-3 已校正系统的单位阶跃响应曲线

6结果分析

从已校正系统的伯德图中可得到校正后系统的相角裕度γ≥45.8 ,对应的截止频率

ωc =1.21rad ,幅值裕度h =15.2dB ,对应的穿越频率为ωx =3.62rad ,图6-2

所示,设计的滞后-超前校正环节达到了系统校正的指标要求。

校正前系统是不稳定的,校正后系统变稳定。校正后的相角裕度从-28.1°增大到45.8°,幅值裕度从-10.5dB 提高到15.2dB 。意味着系统的阻尼比增大,超调量减小,系统的动态性能变好。校正后系统的截止频率从2.43rad/s减小到1.21rad/s,意味着系统的抗高频干扰能力增强,但是,调节时间略有加长。

从已校正系统的单位阶跃响应曲线中可得,如图6-3所示,校正后系统的参数为: 上升时间:t r =0.936s 峰值时间:t p =2.34s 调节时间:t s =11.2s 峰值:c (t p ) =1.27 稳态值:c (∞) =1 超调量:

σ%=

稳态误差:

c (t p ) -c (∞) 1.17-1

⨯100%=⨯100%=27%

c (∞) 1

e ss (∞) =

1

K V

=

1

=0.1 10

总结与体会

参考文献

[1] 胡寿宋. 自动控制原理(第四版). 北京:科学出版社,2001 [2] 王万良. 自动控制原理. 北京:高等教育出版社,2008

[3] 刘坤. MATLAB自动控制原理习题精解. 北京:国防工业出版社,2004

[4] 郭阳宽 王正林. 过程控制工程及仿真:基于MATLAB/Simulink. 北京:电子工业出版社,2009

[5] 卢京潮. 自动控制原理. 西安:西北工业大学出版社,2004

7

指导教师签字:

年 月 日


相关内容

  • 自动控制原理复习题(选择和填空)
    第一章 自动控制的一般概念 1. 如果被调量随着给定量的变化而变化,这种控制系统叫( ) A. 恒值调节系统 B. 随动系统 C. 连续控制系统 D.数字控制系统 2. 主要用于产生输入信号的元件称为( ) A. 比较元件 B. 给定元件 ...
  • 自动控制原理模拟题
    <自动控制原理>模拟题(补) 一.判断题 1.对于线性定常的负反馈控制系统,它的稳定性与外输入信号无关. ( √ ) 2.传递函数的概念也可以用于非线性系统. ( × ) 3.系统的型次是以开环传递函数里的积分环节的个数来划分的 ...
  • 典型环节的模拟研究
    南昌大学实验报告 学生姓名: 学 号: 专业班级: 实验类型:■ 验证 □ 综合 □ 设计 □ 创新 实验日期: 实验成绩: 实验一 典型环节的模拟研究 一. 实验要求 了解和掌握各典型环节模拟电路的构成方法.传递函数表达式及输出时域函数表 ...
  • [测试系统原理与设计](孙传友编著)--习题答案(个人整理)
    <测试系统原理与设计>(孙传友编著)--习题答案(个人整理) (答案仅供参考,部分答案没有,由个人总结整理,若有错误或不当之处请见谅) 第一章 绪论 1. 为什么说仪器技术是信息的源头技术? 仪器是一种信息的工具,起着不可或缺的 ...
  • 自动控制理论答案(孙扬声版)
    T2-1 判断下列方程式所描述的系统的性质:线性或非线性,定常或时变,动态或静态. 1dytd2yt2: (4)sinty(t)3u(t): ytu(t)ut(1)2yt3t: (3)2 dtdt 2 ( ...
  • 隧道施工浅埋段技术交底
    二 级 施 工 技 术 交 底 单位工程名称:隧道 分部工程名称:支护工程 施工技术交底主要内容:浅埋段施工 一.工程概况 XXX 湾隧道XXX 为浅埋段,施工过程中应严格按照设计图纸及规范要求进行施工. 二.施工工艺及注意事项 1.超前地 ...
  • 一种ZVZCS软开关电源的应用
    研究与设计 一种ZVZCS软开关电源的应用 许胜辉1,魏岚婕2 (1.武汉职业技术学院电信工程学院,湖北武汉430074:2.中建国际(深圳)设计顾问有限公司杨浦分公司,湖北武汉430074) 摘要:以拓展开关电源"软开关动作&q ...
  • 先进控制技术及应用
    先进控制技术及应用 作者: 发布时间:2008-02-04 04:04:41 来源: 繁体版 访问数: 4857 在工业生产过程中,一个良好的控制系统不但要保护系统的稳定性和整个生产的安全,满足一定约束条件,而且应该带来一定的经济效益和社会 ...
  • 气体分析仪要求
    气体分析仪要求 一.硬件要求 1.1 RS485通讯,37针信号输入输出,光耦隔离. 1.2 8路开关量(继电器)输出,报警值可设定,且可设置滞后值. 1.3触摸屏显示.控制,背光灯定时熄灭,时间可设定. 1.4数据存储(存储芯片或扩展内存 ...
  • PID闭环控制
    ~ PID控制 当今的自动控制技术都是基于反馈的概念.反馈理论的要素包括三个部分:测量.比较和执行.测量关心的变量,与期望值相比较,用这个误差纠正调节控制系统的响应. 目录 概述 基本用途 现实意义       PID控制器的参 ...