电火花加工.高能速加工的原理 - 范文中心

电火花加工.高能速加工的原理

03/21

电火花加工的原理:

被加工的工件做为工件电极,紫铜(或其它导电材料如石墨)做为工具电极。脉冲电源发出一连串的脉冲电压,加到工件电极和工具电极上,此时工具电极和工件均被淹没在具有一定绝缘性能的工作液(绝缘介质) 中 。

在轴伺服系统的控制下,工具电极慢慢向工件电极进给,当工具电极与工件电极的距离小到一定程度时,在脉冲电压的作用下,两极间最近点处的工作液(绝缘介质) 被击穿,工具电极与工件之间形成瞬时放电通道,产生瞬时高温,使金属局部熔化甚至汽化而被蚀除下来,使局部形成电蚀凹坑。这样以很高的频率连续不断地重复放电,工具电极不断地向工件进给,就可以将工具电极的形状复制到工件上,加工出需要的型面来 。

电火花加工特点:

可以加工任何高强度、高硬度、高韧性、高脆性以及高纯度的导电材料;加工时无明显机械力,适用于低刚度工件和微细结构的加工:脉冲参数可依据需要调节,可在同一台机床上进行粗加工、半精加工和精加工;电火花加工后的表面呈现的凹坑,有利于贮油和降低噪声;生产效率低于切削加工;放电过程有部分能量消耗在工具电极上,导致电极损耗,影响成形精度。

电火花加工的应用:

电火花加工主要用于模具生产中的型孔、型腔加工,已成为模具制造业的主导加工方法,推动了模具行业的技术进步。电火花加工零件的数量在3000件以下时,比模具冲压零件在经济上更加合理。按工艺过程中工具与工件相对运动的特点和用途不同,电火花加工可大体分为:电火花成形加工、电火花线切割加工、电火花磨削加工、电火花展成加工、非金属电火花加工和电火花表面强化等。

(1)电火花成形加工 该方法是通过工具电极相对于工件作进给运动,将工件电极的形状和尺寸复制在工件上,从而加工出所需要的零件。它包括电火花型腔加工和穿孔加工两种。电火花型腔加工主要用于加工各类热锻模、压铸模、挤压模、塑料模和胶木膜的型腔。电火花穿孔加工主要用于型孔(圆孔、方孔、多边形孔、异形孔)、曲线孔(弯孔、螺旋孔)、小孔和微孔的加工。近年来,为了解决小孔加工中电极截面小、易变形、孔的深径比大、排屑困难等问题,在电火花穿孔加工中发展了高速小孔加工,取得良好的社会经济效益。

(2)电火花线切割加工 该方法是利用移动的细金属丝作工具电极,按预定的轨迹进行脉冲放电切割。按金属丝电极移动的速度大小分为高速走丝和低速走丝线切割。我国普通采用高速走丝线切割,近年来正在发展低速走丝线切割,高速走丝时,金属丝电极是直径为φ0.02~φ0.3mm的高强度钼丝,往复为8~10m /s 。低速走丝时,多采用铜丝,线电极以小于0.2m/s的速度作单方向低速运动。线切割时,电极丝不断移动,其损耗很小,因而加工精度较高。其平均加工精度可达 0.0lmm ,大大高于电火花成形加工。表面粗糙度Ra 值可达1.6 或更小。

高能密度束流加工的共同特点:

1. 加工速度快,热流输入少,对工件热影响极少,工件变形小。

2. 束流能够聚焦且有极高的能量密度,激光加工、电子束加工可使任何坚硬、难熔的材料在瞬间熔融汽化,而离子束加工是以极大能量撞击零件表面,使材料变形、分离破坏。

3. 工具与工件不接触,无工具变形及损耗问题。

4. 束流控制方便,易实现加工过程自动化,

电子束:

原理

在真空条件下,利用电子枪中产生的电子经加速、聚焦后能量密度为106~109w/cm2的极细束流高速冲击到工件表面上极小的部位,并在几分之一微秒时间内,其能量大部分转换为热能,使工件被冲击部位的材料达到几千摄氏度,致使材料局部熔化或蒸发,来去除材料。

电子束加工的特点

1)高功率密度 属非接触式加工,工件不受机械力作用,很少产生宏观应力变形,同时也不存在工具损耗问题。

2)电子束强度、位置、聚焦可精确控制,,电子束通过磁场和电场可在工件上以任何速度行进,便于自动化控制。

3)环境污染少 适合加工纯度要求很高的半导体材料及易氧化的金属材料。 电子束加工的应用

1)电子束打孔

不锈钢、耐热钢、宝石、陶瓷、玻璃等各种材料上的小孔、深孔。最小加工直径可达0.003mm ,最大深径比可达10。

还可凭借偏转磁场的变化使电子束在工件内偏转方向加工出弯曲的孔,

2)电子束切割

可对各种材料进行切割,切口宽度仅有3~6μm 。

利用电子束再配合工件的相对运动,可加工所需要的曲面

3)光刻

当使用低能量密度的电子束照射高分子材料时,将使材料分子链被切断或重新组合,引起分子量的变化即产生潜象,再将其浸入溶剂中将潜象显影出来。

把这种方法与其它处理工艺结合使用,可实现在金属掩膜或材料表面上刻槽。

4)其它应用

用计算机控制,对陶瓷、半导体或金属材料进行电子刻蚀加工;异种金属焊接;电子束热处理等。

激光束

激光加工原理

激光加工(laser beam machining,LBM )是在光热效应下产生的高温熔融和冲击波的综合作用过程。

通过光学系统将激光束聚焦成尺寸与光波波长相近的极小光斑,其功率密度可达107~1011w/cm2,温度可达一万摄氏度,将材料在瞬间(10-3s )熔化和蒸发,工件表面不断吸收激光能量,凹坑处的金属蒸汽迅速膨胀,压力猛然增大,熔融物被产生的强烈冲击波喷溅出去。

激光加工的特点

1)激光加工属非接触加工,无明显机械力,也无工具损耗,工件不变形,加工

速度快,热影响区小,可达高精度加工,易实现自动化。

2)因功率密度是所有加工方法中最高的,所以不受材料限制,几乎可加工任何金属与非金属材料。

3)激光加工可通过惰性气体、空气或透明介质对工件进行加工,如可通过玻璃对隔离室内的工件进行加工或对真空管内的工件进行焊接。

4)激光可聚焦形成微米级光斑,输出功率大小可调节,常用于精密细微加工,最高加工精度可达0.001mm ,表面粗糙度Ra 值可达0.4~0.1。

5)能源消耗少,无加工污染,在节能、环保等方面有较大优势。

激光加工的应用

(1)激光打孔

激光打孔主要用于特殊材料或特殊工件上的孔加工,如仪表中的宝石轴承、陶瓷、玻璃、金刚石拉丝模等非金属材料和硬质合金、不锈钢等金属材料的细微孔的加工。

激光打孔的效率非常高,功率密度通常为107~108w/cm2,打孔时间甚至可缩短至传统切削加工的百分之一以下,生产率大大提高。。

(2)激光焊接

激光束焊接是以聚集的激光束作为能源的特种熔化焊接方法。

激光器利用原子受激辐射的原理,使物质受激而产生波长均一,方向一致和强度非常高的光束。经聚焦后,激光束的能量更为集中,能量密度可达105~107W/cm2。 如将焦点调节到焊件结合处,光能迅速转换成热能,使金属瞬间熔化,冷却凝固后成为焊缝。

(3)激光切割

激光切割是利用聚焦以后的高功率密度(105~107w/cm2)激光束连续照射工件,光束能量以及活性气体辅助切割过程附加的化学反应热能均被材料吸收,引起照射点材料温度急剧上升,到达沸点后材料开始汽化,并形成孔洞,且光束与工件相对移动,使材料形成切缝,切缝处熔渣被一定压力的辅助气体吹除。

激光切割是激光加工中应用最广泛的一种,主要是其切割速度快、质量高、省材料、热影响区小、变形小、无刀具磨损、没有接触能量损耗,噪音小,易实现自动化,而且还可穿透玻璃切割真空管内的灯丝,由于以上诸多优点,深受各制造领域欢迎,不足之处是一次性投资较大,且切割深度受限。

(4)激光表面热处理

当激光能量密度在103~105w/cm2左右时,对工件表面进行扫描,在极短的时间内加热到相变温度(由扫描速度决定时间长短),工件表层由于热量迅速向内传导快速冷却,实现了工件表层材料的相变硬化(激光淬火)。

与其它表面热处理比较,激光热处理工艺简单,生产率高,工艺过程易实现自动化。一般无须冷却介质,对环境无污染,对工件表面加热快,冷却快,硬度比常温淬火高约15%~20%;耗能少,工件变形小,适合精密局部表面硬化及内孔或形状复杂零件表面的局部硬化处理,但激光表面热处理设备费用高,工件表面硬化深度受限,因而不适合大负荷的重型零件。

(5)其它应用

近年来,各行业中对激光合金化、激光抛光、激光冲击硬化法、激光清洗模具技术也在不断深入研究及应用中。

离子束

离子束加工原理

离子束加工(ion beam machining ,IBM )是在真空条件下利用离子源(离子枪)产生的离子经加速聚焦形成高能的离子束流投射到工件表面,使材料变形、破坏、分离以达到加工目的。

因为离子带正电荷且质量是电子的千万倍,且加速到较高速度时,具有比电子束大得多的撞击动能,因此,离子束撞击工件将引起变形、分离、破坏等机械作用,而不像电子束是通过热效应进行加工。

离子束加工特点

1)加工精度高。因离子束流密度和能量可得到精确控制。

2)在较高真空度下进行加工,环境污染少。特别适合加工高纯度的半导体材料及易氧化的金属材料。

3)加工应力小,变形极微小,加工表面质量高,适合于各种材料和低刚度零件的加工。

离子束加工的应用范围

离子束加工方式包括离子蚀刻、离子镀膜及离子溅射沉积和离子注入等。

离子刻蚀

当所带能量为0.1~5keV 、直径为十分之几纳米的的氩离子轰击工件表面时,此高能离子所传递的能量超过工件表面原子(或分子)间键合力时,材料表面的原子(或分子)被逐个溅射出来,以达到加工目的

离子束刻蚀可用于加工空气轴承的沟槽、打孔、加工极薄材料及超高精度非球面透镜,还可用于刻蚀集成电路等的高精度图形。

离子溅射沉积

采用能量为0.1~5keV 的氩离子轰击某种材料制成的靶材,将靶材原子击出并令其沉积到工件表面上并形成一层薄膜。实际上此法为一种镀膜工艺。 离子镀膜

离子镀膜一方面是把靶材射出的原子向工件表面沉积,另一方面还有高速中性粒子打击工件表面以增强镀层与基材之间的结合力(可达10~20MPa ),

此法适应性强、膜层均匀致密、韧性好、沉积速度快,目前已获得广泛应用。 离子注入

用5~500keV 能量的离子束,直接轰击工件表面,由于离子能量相当大,可使离子钻进被加工工件材料表面层,改变其表面层的化学成分,从而改变工件表面层的机械物理性能。注入表面元素的均匀性好,纯度高,其注入的粒量及深度可控制,但设备费用大、成本高、生产率较低。


相关内容

  • 福建工程学院精密与特种加工技术复习材料
    1.特种加工的能量转换原理. 特种加工是将电能.热能.光能.声能和磁能等物理能量及化学能量或其组合乃至与机械能组合直接施加到被加工的部位上,从而实现材料去除的加工方法. 2.精密切削加工分类. 1)精密.超精密车削:2)精密.超精密铣削:3 ...
  • 焊接考试作业
    焊接考试作业 班级 学号 姓名 一·激光焊接和电子束焊接都属于高能束焊接方法,请从能量传递方式.焊接 原理及焊接工艺等方面阐述两种焊接方法的差异和优缺点.(10) 答: 激光焊接:(1. 能量传递与焊接原理)以可聚焦的激光束作为焊接能源. ...
  • 特种加工实习报告
    特种加工实习报告 一.电火花线切割机床 本次实习机床为ACTSPARK F2P线切割机,如下图1所示 图1 经查阅,其基本参数如下: X .Y .Z 行程(mm): 500×400×250 U .V 行程(mm): ±18 最大加工锥度( ...
  • 过电压保护装置
    过电压保护装置.自动调谐接地补偿装置 简介 由于信息系统的发展,电子信息设备的暂态过电压保护便成为一个十分重要的问题.对此,在2000年版建筑物防雷设计规范(GB50057-1994) 中增加了第六章防雷击电磁脉冲的相关内容,为便于正确选用 ...
  • 先进制造技术导论复习题
    概述 1.6 先进制造技术发展趋势 1 制造自动化经历了刚性自动化.可编程自动化和综合自动化的发展过程. 制造自动化几个有代表性的发展方向:(1)集成化 集成是综合自动化的一个重要特征.他的发展将使制造企业各部门之间以及制造活动各阶段之间的 ...
  • 金属基复合材料的二次成型加工工艺研究进展
    2007年第41卷l 11 13 金属基复合材料的二次成型加工工艺研究进展 聂小武 鲁世强 王克鲁 南昌航空大学 摘 要:金属基复合材料的发展非常迅速, 应用越来越广泛, 是一类重要的材料.为了制造实用的零组件, 需要对金属基复合材料进行二 ...
  • [核技术应用]复习
    <核技术应用>期末复习 1.1核技术内涵:以核物理.辐射物理.放射化学.辐射化学和核辐射物质的相互作用为基础,以加 速器.反应堆.核辐射探测器和核电子学为支撑技术的综合性很强的现代科学技术. 核技术所涉及的技术范围:射线技术.同 ...
  • 齿轮精密锻造技术
    汽车齿轮的精密锻造技术 摘要:本文介绍了精密锻造成形在汽车齿轮制造中的应用,总结了各种齿形精密锻造的关键技术,特别提到分流锻造在齿形成形方面的应用. 关键词:齿轮锻造:精密锻造 前言:齿轮精密锻造成形是一种优质.高效.低消耗的先进制造技术, ...
  • [高级食品生物化学]期末考试题
    <高级食品生物化学>期末考试题 A 一·名词解释(5个小题,每个2分,共10分) 1.生物氧化 2.呼吸链 3.氧化磷酸化 4.P/O比值 5.解偶联剂 二.选择题(10个小题,每个2分,共20分) 1.肝内糖酵解的主要功能是( ...
  • 现代表面技术[作业]
    现代表面技术 第一章表面技术概论 (1)举例说明表面技术在研究和制备新材料中的应用: 第二章作业题 1.按照作用原理,表面技术可以分为哪些类型? 2.固体材料界面有哪三种? 3.何谓清洁表面?何谓实际表面? 4.清洁表面为何存在各种类型的表 ...