人教版数学必修五 - 范文中心

人教版数学必修五

10/09

人教版数学必修五

第一章 解三角形重难点解析

第一章 课文目录

1.1 正弦定理和余弦定理 1.2 应用举例 1.3 实习作业 【重点】

1、正弦定理、余弦定理的探索和证明及其基本应用。

2、在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形; 3、三角形各种类型的判定方法;三角形面积定理的应用;实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解决。 4、结合实际测量工具,解决生活中的测量高度问题。

5、能根据正弦定理、余弦定理的特点找到已知条件和所求角的关系。 6、推导三角形的面积公式并解决简单的相关题目。 【难点】

1、已知两边和其中一边的对角解三角形时判断解的个数。

2、勾股定理在余弦定理的发现和证明过程中的作用,正、余弦定理与三角形的有关性质的综合运用。

3、根据题意建立数学模型,画出示意图,能观察较复杂的图形,从中找到解决问题的关键条件。

4、灵活运用正弦定理和余弦定理解关于角度的问题。 5、利用正弦定理、余弦定理来求证简单的证明题。 【要点内容】 一、正弦定理:

在任一个三角形中,各边和它所对角的正弦比相等,即△ABC外接圆半径) 1.直角三角形中:sinA=

a b

,sinB=, sinC=1 c c

a b c

== =2R(R 为sin A sin B sin C

即 c=

a b c

, c= , c=.

sin A sin B sin C

a b c

== sin A sin B sin C

2.斜三角形中

证明一:(等积法)在任意斜△ABC当中 111

S △ABC=ab sin C =ac sin B =bc sin A

2221a b c

两边同除以abc 即得:==

2sin A sin B sin C

证明二:(外接圆法) 如图所示,∠A=∠D ∴

a a ==CD =2R sin A sin D

b c

=2R,=2R sin B sin C

同理

证明三:(向量法)

过A 作单位向量垂直于

由 +=

两边同乘以单位向量 得 •(+)=•

则j •+j •=j •

∴||•||cos90︒+||•||cos(90︒-C)=||•||cos(90︒-A) ∴a sin C =c sin A ∴

a c

= sin A sin C

c b a b c

= ∴== sin C sin B sin A sin B sin C

同理,若过C 作垂直于得: 正弦定理的应用

正弦定理可以用来解两种类型的三角问题: 1.两角和任意一边,求其它两边和一角;

2.两边和其中一边对角,求另一边的对角,进而可求其它的边和角。(见图示)已知a, b

和A, 用正弦定理求B 时的各种情况

:

⑴若A 为锐角时:

无解⎧a

一解(直角) ⎪a =bsinA ⎨

⎪bsinA

已知边a,b 和∠A

a

无解

a=CH=bsinA仅有一个解

CH=bsinA

⎧a ≤b 无解

⑵若A 为直角或钝角时:⎨

a >b 一解(锐角) ⎩

2、余弦定理

余弦定理用语言可以这样叙述,三角形一边的平方等于另两边的平方和再减去这两边与

夹角余弦的乘积的2倍.即:

a 2=b 2+c 2-2bc cos A b 2=c 2+a 2-2ca cos B c 2=a 2+b 2-2ab cos C

若用三边表示角,余弦定理可以写为

余弦定理可解以下两种类型的三角形:

(1)已知三角形的三条边长,可求出三个内角; (2)已知三角形的两边及夹角,可求出第三边. 注意:

在(0,π)范围内余弦值和角的一一对应性.若cosA >0.则A 为锐角;若cosA=0,则A 为直角;若cosA <0,则A 为钝角.

3、余弦定理与勾股定理的关系、余弦定理与锐角三角函数的关系

在△ABC 中,c =a+b-2abcosC .若∠C=90°,则cosC=0,于是

c =a+b-2ab ·0=a+b.

说明勾股定理是余弦定理的特例,余弦定理是勾股定理的推广.

2

2

2

2

2

2

2

2

这与Rt △ABC 中,∠C=90°的锐角三角函数一致,即直角三角形中的锐角三角函数是余弦定理的特例. 4、三角形的有关定理:

内角和定理:A+B+C=180°,sin(A+B)=sinC,cos(A+B)= -cosC,

cos

C A +B C A +B =sin,sin =cos

2222

面积公式:S=

111

absinC=bcsinA=casinB 222

S=pr=

p (p -a )(p -b )(p -c ) (其中p=

a +b +c

,r 为内切圆半径) 2

射影定理:a = b cos C + c cos B ;b = a cos C + c cos A ;c = a cos B + b cos A 5、求解三角形应用题的一般步骤: (1)、分析题意,弄清已知和所求; (2)、根据提意,画出示意图;

(3)、将实际问题转化为数学问题,写出已知所求; (4)、正确运用正、余弦定理。 【典型例题】

例1 已知在∆ABC 中,c =10, A =45, C =30, 求a , b 和B 解: c =10, A =45, C =30 ∴B

=180-(A +C ) =105

a c c sin A 10⨯sin 450

===102 由得 a =0

sin A sin C sin C sin 30

b c

=得 sin B sin C

c sin B 10⨯sin 10506+20b ===20sin 75=20⨯=5+52 0

sin C 4sin 30

例2 在∆ABC 中,b =3, B =600, c =1, 求a 和A , C

b c c sin B 1⨯sin 6001解:∵=, ∴sin C ===

sin B sin C b 2 b >c , B =600, ∴C

∴a =b 2+c 2=2

例3∆ABC 中,c =6, A =450, a =2, 求b 和B , C

a c c sin A 6⨯sin 450解: =, ∴sin C ===

sin A sin C a 22

c sin A

c sin B 6sin 750

∴当C =60时,B =75, b ===3+1,

sin C sin 600

c sin B 6sin 150

∴当C =120时,B =15, b ===3-1 0

sin C sin 60

∴b =+1, B =750, C =600或b =3-1, B =150, C =1200

例4 已知△ABC ,B D为B 的平分线,求证:AB ∶BC =A D∶DC

分析:前面大家所接触的解三角形问题是在一个三角形内研究问题,而B 的平分线BD 将△ABC

分成了两个三角形:△ABD 与△CBD ,故要证结论成立,可证明它的等价形式:AB ∶AD =BC ∶DC ,从而把问题转化到两个三角形内,而在三角形内边的比等于所对角的正弦值的比,故可利用

正弦定理将所证继续转化为

AB AD BC DC

=, =,再根据相等角正

sin ABD sin ABD sin BDC sin DBC

弦值相等,互补角正弦值也相等即可证明结论. 证明:在△ABD 内,利用正弦定理得:

AB AD AB sin ADB

=即=

sin ADB sin ABD AD sin ABD

在△BCD 内,利用正弦定理得:

BC DC BC sin BDC

=, 即=.

sin BDC sin DBC DC sin DBC

∵BD 是B 的平分线.

∴∠ABD =∠DBC ∴sinABD =sin DBC . ∵∠ADB +∠BDC =180°

∴sinADB =sin (180°-∠BDC )=sin BDC ∴

AB sin ADB sin BDC BC === AD sin ABD sin DBC CD AB AD

= BC DC

评述:此题可以启发学生利用正弦定理将边的关系转化为角的关系,并且注意互补角的正弦值相等这一特殊关系式的应用.

例5在ΔABC 中,已知a=3,b=2,B=45°,求A,C 及边c .

a sin B 3⋅sin 45 解:由正弦定理得:sinA=, 因为B=45°b 22

所以有两解A=60°或A=120°

b sin C

(1)当A=60°时,C=180°-(A+B)=75°, c==

sin B b sin C

=(2)当A=120°时,C=180°-(A+B)=15°,c=

sin B

2⋅sin 75 +2

, =

2sin 45

2⋅sin 15 6-2=

2sin 45

思维点拨:已知两边和其中一边的对角解三角形问题,用正弦定理解,但需注意解的情况的讨论.

tan A a 2

=例6△ABC 中,若,判断△ABC 的形状。

tan B b 2

sin A cos B sin 2A cosB sin A

解一:由正弦定理:= =∴sin 2A =sin 2B

sin B cos A sin 2A cosA sin B

∴2A = 2B 或 2A = 180︒- 2B 即:A = B 或A + B = 90︒∴△ABC 为等腰或直角三角形

a a 2+c 2-b 2

sin A cos B a 2a 2=2⇒2=2 解二: 由题设:22cos A sin B b b +c -a b b

2bc 2R

化简:b 2(a 2 + c 2-b 2) = a 2(b 2 + c 2-a 2) ∴(a 2 -b 2)(a 2 + b 2-c 2)=0 ∴a = b 或a 2 + b 2 = c 2∴△ABC 为等腰或直角三角形. 思维点拨:判断三角形的形状从角或边入手.

例7在ΔABC 中,已知A,B,C成等差数列,b=1, 求证:1

a b c b 2323

==, 得a+c=(sinA+sinC)=(sinA+sinC)= sin A sin B sin C sin B 23

[sinA+sin(120°-A)]=2sin(A+30°) ,因为0°

法二.∵B=60°,b=1,∴a +c-b =2accos60°, ∴a +c-1=ac, ∴a +c-ac=1,

∴(a+c)+3(a-c)=4, ∴(a+c)=4-3(a-c). ∵0≤a-c1,1

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2R sin 2A -sin 2C =

解:由已知条件得

(

)2a -b sin B 成立,求△ABC 面积S 的最大值.

)

(2R )2

(sin

2

A -sin 2B =2R sin B

)

2a -b .即有 a 2-c 2=2ab -b 2,

)

a 2+b 2-c 22π

=又 cos C = ∴ c = .

2ab 24

122

ab =⋅4R 2sin A sin B ∴ S =ab sin C =

244=-

22

R [cos (A +B )-cos (A -B 2

)]=

22⎡2R ⎢+cos (A -B 2⎢⎣2

)⎥ .

⎥⎦

所以当A = B 时,S max =

2+12

R . 2

思维点拨::三角形中的三角变换,应灵活运用正、余弦定理.在求值时,要利用三角函数的有关性质.

例9在某海滨城市附近海面有一台风,据检测,当前台 风中心位于城市O(如图) 的东偏南θ(θ=2

10

) 方向 300 km的海面P 处,并以20 km / h的速度向西偏北45

的 方向移动,台风侵袭的范围为圆形区域,当前半径为60 km

并以10 km / h的速度不断增加,问几小时后该城市开始受到 台风的侵袭。

解:(一) 如图建立坐标系:以O 为原点,正东方向为x 轴正向. 在时刻:t (h )台风中心P (x , y ) 的坐标为

⎧⎪⎪x =300⨯22⎨

10-20⨯2t , 2 ⎪⎪⎩

y =-300⨯710+20⨯22t . 此时台风侵袭的区域是(x -x ) 2+(y -y ) 2≤[r (t )]2, 其中r (t ) =10t+60,

若在t 时,该城市O 受到台风的侵袭,则有

(0-x ) 2+(0-y ) 2≤(10t +60) 2,

即(300⨯

210-20⨯22t ) 2+(-300⨯7210+20⨯22

2

t ) ≤(10t +60) 2, 即t 2

-36t +288≤0, 解得12≤t ≤24.

答:12小时后该城市开始受到台风气侵袭

解(二) 设在时刻t(h)台风中心为Q, 此时台风侵袭的圆形区域半径为10t+60(km)

若在时刻t 城市O 受到台风的侵袭, 则OQ ≤10t +60 由余弦定理知OQ 2

=PQ 2

+PO 2

-2PQ ⋅PO cos ∠OPQ 由于PO=300,PQ=20t

cos ∠OPQ =cos (θ-45 )

=

45

故OQ 2

=PQ 2

+PO 2

-2PQ ⋅PO cos ∠OPQ =202t 2

-9600t +300t 2

因此202t 2-9600t +300t 2≤(10t +60)

2

解得12≤t ≤24

例10如图,A 、B 两点都在河的对岸(不可到达),设计一种测量A 、B 两点间距离的方法。 分析:这是例1的变式题,研究的是两个不可到达的点之间的距离测量问题。首先需要构造三角形,所以需要确定C 、D 两点。根据正弦定理中已知三角形的任意两个内角与一边既可求出另两边的方法,分别求出AC 和BC ,再利用余弦定理可以计算出AB 的距离。

解:测量者可以在河岸边选定两点C 、D ,测得CD=a,并且在C 、D 两点分别测得∠BCA=α,

∠ ACD=β,∠CDB=γ,∠BDA =δ,在∆ADC 和∆BDC 中,应用正弦定理得

AC = BC =

a sin(γ+δ) =

sin[180︒-(β+γ+δ)]a sin γ= sin[180︒-(α+β+γ)]

a sin(γ+δ) sin(β+γ+δ) a sin γ sin(α+β+γ)

计算出AC 和BC 后,再在∆ABC 中,应用余弦定理计算出AB 两点间的距离 AB =

AC 2+BC 2-2AC ⨯BC cos α

变式训练:若在河岸选取相距40米的C 、D 两点,测得∠BCA=60︒,∠ACD=30︒,∠CDB=45

,∠BDA =60︒

略解:将题中各已知量代入例2推出的公式,得AB=206

评注:可见,在研究三角形时,灵活根据两个定理可以寻找到多种解决问题的方案,但有些过程较繁复,如何找到最优的方法,最主要的还是分析两个定理的特点,结合题目条件来选择最佳的计算方式。

例11AB 是底部B 不可到达的一个建筑物,A 为建筑物的最高点,设计一种测量建筑物高度AB 的方法。

分析:求AB 长的关键是先求AE ,在∆ACE 中,如能求出C 点到建筑物顶部A 的距离CA ,再测出由C 点观察A 的仰角,就可以计算出AE 的长。

解:选择一条水平基线HG ,使H 、G 、B 三点在同一条直线上。由在H 、G 两点用测角仪器测得A 的仰角分别是α、β,CD = a,测角仪器的高是h ,那么,在∆ACD 中,根据正弦定理可得

AC =

a sin β sin(α-β)

AB = AE + h = AC sin α+ h

=

a sin αsin β + h sin(α-β)

例12如图,在山顶铁塔上B 处测得地面上一点A 的俯角α=54︒40',在塔底C 处测得A 处的俯角β=50︒1'。已知铁塔BC 部分的高为27.3 m,求出山高CD(精确到1 m)

解:在∆ABC 中, ∠BCA=90︒+β, ∠ABC =90︒-α, ∠BAC=α- β, ∠BAD =α. 根据正弦定理,

BC AB

=

sin(α-β) sin(90︒+β)

BC sin(90︒+β) BC cos β 所以 AB == sin(α-β) sin(α-β)

解Rt ∆ABD 中, 得 BD =ABsin∠BAD=

将测量数据代入上式, 得 BC cos βsin α sin(α-β)

27. 3cos 50︒1'sin 54︒40' BD = ︒︒''sin(5440-501)

27. 3cos 50︒1'sin 54︒40' = sin 4︒39'

≈177 (m)

CD =BD -BC≈177-27.3=150(m)

答:山的高度约为150米.

例13如图, 一辆汽车在一条水平的公路上向正东行驶, 到A 处时测得公路南侧远处一山顶D 在东偏南15︒的方向上, 行驶5km 后到达B 处, 测得此山顶在东偏南25︒的方向上, 仰角为8︒, 求此山的高度CD.

解:在∆ABC 中, ∠A=15︒, ∠C= 25︒-15︒=10︒, 根据正弦定理,

BC AB = , sin A sin C

AB sin A 5sin 15︒

BC == sin 10︒sin C

≈ 7.4524(km)

CD=BC⨯tan ∠DBC ≈BC ⨯tan8︒≈1047(m)

答:山的高度约为1047米

例14如图,一艘海轮从A 出发,沿北偏东75︒的方向航行67.5 n mile后到达海岛B, 然后从B 出发, 沿北偏东32︒的方向航行54.0 n mile 后达到海岛C. 如果下次航行直接从A

出发到达

C, 此船应该沿怎样的方向航行, 需要航行多少距离?(角度精确到0.1︒, 距离精确到0.01n mile)

分析:首先根据三角形的内角和定理求出AC 边所对的角∠ABC ,即可用余弦定理算出AC 边,再根据正弦定理算出AC 边和AB 边的夹角∠CAB 。

解:在∆ABC 中,∠ABC=180︒- 75︒+ 32︒=137︒,根据余弦定理, AC=AB 2+BC 2-2AB ⨯BC ⨯cos ∠ABC

=67. 52+54. 02-2⨯67. 5⨯54. 0⨯cos 137︒

≈113.15

根据正弦定理,

BC = AC sin ∠CAB sin ∠ABC

sin ∠CAB = BC sin ∠ABC AC

54. 0sin 137︒= 113. 15

≈0.3255,

所以 ∠CAB =19.0︒,

75︒- ∠CAB =56.0︒

答:此船应该沿北偏东56.1︒的方向航行, 需要航行113.15n mile

例15在某点B 处测得建筑物AE 的顶端A 的仰角为θ,沿BE 方向前进30m ,至点C 处测得顶端A 的仰角为2θ,再继续前进103m 至D 点,测得顶端A 的仰角为4θ,求θ的大小和建筑物AE 的高。

解法一:(用正弦定理求解)由已知可得在∆ACD 中,

AC=BC=30,

AD=DC=103,

∠ADC =180︒-4θ, ∴10=sin 2θ30 。 sin(180︒-4θ)

因为 sin4θ=2sin2θcos2θ

∴ c os2θ=, 得 2θ=30︒ 2

∴ θ=15︒,

∴在Rt ∆ADE 中,AE=ADsin60︒=15

答:所求角θ为15︒,建筑物高度为15m

解法二:(设方程来求解)设DE= x,AE=h

在 Rt ∆ACE 中,(10+ x)2 + h2=302

在 Rt ∆ADE 中,x 2+h2=(10) 2

两式相减,得x=53,h=15

∴在 Rt ∆ACE 中,tan2θ=h

103+x =3 3

∴2θ=30︒, θ=15︒

答:所求角θ为15︒,建筑物高度为15m

解法三:(用倍角公式求解)设建筑物高为AE=8,由题意,得

∠BAC=θ, ∠CAD=2θ, AC = BC =30m , AD = CD =10m

在Rt ∆ACE 中,sin2θ=

在Rt ∆ADE 中,sin4θ=x --------- ① 304

103, --------- ②

②÷① 得 cos2θ=,2θ=30︒, θ=15︒,AE=ADsin60︒=15 2

答:所求角θ为15︒,建筑物高度为15m

例16某巡逻艇在A 处发现北偏东45︒相距9海里的C 处有一艘走私船,正沿南偏东75︒的方向以10海里/小时的速度向我海岸行驶,巡逻艇立即以14海里/小时的速度沿着直线方向追去,问巡逻艇应该沿什么方向去追?需要多少时间才追赶上该走私船?

分析:这道题的关键是计算出三角形的各边,即需要引入时间这个参变量。

解:如图,设该巡逻艇沿AB 方向经过x 小时后在B 处追上走私船,则CB=10x, AB=14x,AC=9,

∠ACB=75︒+45︒=120︒

∴(14x) 2= 92+ (10x) 2 -2⨯9⨯10xcos 120︒

∴化简得32x 2-30x-27=0,即x=

所以BC = 10x =15,AB =14x =21, 39, 或x=-(舍去) 216

BC sin 120︒15353又因为sin ∠BAC === ⨯AB 21421

, ∴∠BAC =38︒13', 或∠BAC =141︒47'(钝角不合题意,舍去)

∴38︒13'+45︒=83︒13'

答:巡逻艇应该沿北偏东83︒13'方向去追,经过1.4小时才追赶上该走私船.

评注:在求解三角形中,我们可以根据正弦函数的定义得到两个解,但作为有关现实生活的应用题,必须检验上述所求的解是否符合实际意义,从而得出实际问题的解

【考题解析】

★★★高考在考什么

【考题回放】

1.设a , b , c 分别是∆ABC 的三个内角A , B , C 所对的边,则a =b (b +c )是A =2B 的2

( A )

(A )充分条件(B )充分而不必要条件

(C )必要而充分条件(D )既不充分又不必要条件

2.在∆ABC 中,已知tan A +B =sin C ,给出以下四个论断: 2

①tan A ⋅cot B =1 ②0

22222③sin A +cos B =1 ④cos A +cos B =sin C

其中正确的是( B )

(A )①③ (B )②④ (C )①④(D )②③

3.在△ABC 中,已知A 、B 、C 成等差数列,则tan

__________. A C A C +tan +3tan tan 的值为2222

4.如果∆A 1B 1C 1的三个内角的余弦值分别等于∆A 2B 2C 2的三个内角的正弦值,则()

A .∆A 1B 1C 1和∆A 2B 2C 2都是锐角三角形

B .∆A 1B 1C 1和∆A 2B 2C 2都是钝角三角形

C .∆A 1B 1C 1是钝角三角形,∆A 2B 2C 2是锐角三角形

D .∆A 1B 1C 1是锐角三角形,∆A 2B 2C 2是钝角三角形

5.己知A 、C 是锐角△ABC 的两个内角,且tanA, tanC是方程x 2-3px+1-p =0

(p≠0,且p ∈R) ,的两个实根,则tan(A+C)=_______,tanA,tanC 的取值范围分别是和_____,p 的取值范围是__________;(0,) ;(0,) ;[

6.在ΔABC 中,已知AB =2,1) 3466,AC 边上的中线BD=5,求sinA. , cos B =36

126【专家解答】设E 为BC 的中点,连接DE ,则DE//AB,且DE =AB =, 23

222设

ΔBDE 中可得BD =BE +ED -2BE ⋅ED cos ∠BED ,

782665=x 2++2⨯⨯x ,解得x =1,x =-3336

28222故BC=2,从而AC =AB +BC -2AB ⋅BC cos B =, 3

2即AC =sin B =,故,sin A ==6sin A

★★★高考要考什么

【考点透视】

本专题主要考查正弦定理和余弦定理.

【热点透析】

三角形中的三角函数关系是历年高考的重点内容之一,本节主要帮助考生深刻理解正、余弦定理,掌握解斜三角形的方法和技巧学生需要掌握的能力:

(1)运用方程观点结合恒等变形方法巧解三角形;

(2)熟练地进行边角和已知关系式的等价转化;

(3)能熟练运用三角形基础知识,正(余) 弦定理及面积公式与三角函数公式配合,通过等价转化或构建方程解答三角形的综合问题,注意隐含条件的挖掘★★★突破重难点

【范例1】在△ABC 中,角A ,B ,C 所对的边分别为a,b,c, b=acosC,且△ABC 的最大边长为12,最小角的正弦值为1。 3

(1) 判断△ABC 的形状;

(2) 求△ABC 的面积。

B=π-(A +C ) , ∴ s inB=sin(A+C),从而(#)式变为sin(A+C)= sinAcosC,

∴cosAsinC=0,又A ,C ∈(0, π) ∴cosA=0,A=π,∴△ABC 是直角三角形。 2

(2) △ABC 的最大边长为12,由(1)知斜边a =12,又 △ABC 最小角的正弦值为11,∴Rt △ABC 的最短直角边为12⨯=4,另一条直角边为82 33

∴S △ABC =1⨯4⨯82=162 2

【点晴】此题主要考查三角函数变换及正弦定理的应用. 用正弦定理化边为角,再以角为突破口,判断出△ABC 的形状,最后由已知条件求出三条边,从而求面积.

【文】在△ABC 中,若tanA ︰tanB =a 2:b 2,试判断△ABC 的形状.

解析(1) b=acosC,∴由正弦定理,得sinB=sinAcosC, (#)

解析由同角三角函数关系及正弦定理可推得

∵A 、B 为三角形的内角,∴sinA≠0,sinB≠0.

∴2A =2B 或2A =π-2B ,∴A =B 或A +B =π. 2

所以△ABC 为等腰三角形或直角三角形.

【点晴】三角形分类是按边或角进行的,所以判定三角形形状时一般要把条件转化为边之间关系或角之间关系式,从而得到诸如a 2+b 2=c 2, a 2+b 2>c2(锐角三角形),a 2+b 2<c 2(钝角三角形)或sin(A-B) =0,sinA =sinB ,sinC =1或cosC =0等一些等式,进而判定其形状,但在选择转化为边或是角的关系上,要进行探索.

【范例2】∆ABC 中,内角A . B . C 的对边分别为a . b . c ,已知a . b . c 成等比数列,且cos

B =(1)求cot A +cot C 的值;

(2)若⋅=

解析(1)由cos B =3,求a +c

23722得sin B =,由b =ac 得sin B =sin A sin C , 44

cos A cos C sin C cos A +cos C sin A sin (A +C )cot A +cot C =+== sin A sin C sin A sin C sin 2B

sin B 1===2sin B sin B

3332⋅=(2)由得:ac ⋅cos B =,因c o s B =,所以:ac =2,即:b =2224

222222由余弦定理b =a +c -2ac ⋅cos B 得a +c =b +2ac ⋅cos B =5

于是:(a +c )=a 2+c 2+2ac =5+4=9故a +c =【点晴】以三角形为载体,以三角变换为核心,结合正弦定理和余弦定理综合考查逻辑分析和计算推理能力是高考命题的一个重要方向,因此要特别关注三角函数在解斜三角形中的灵活应用. 2

【文】在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,4sin

(1)求角A 的度数;

(2)若a =3,b +c =3,求b 和c 的值. 2B +C 7-cos 2A =. 22

B +C 7-cos 2A =及A +B +C =180︒, 得: 22

72[1-cos(B +C )]-2cos 2A +1=,4(1+cos A ) -4cos 2A =52

1 即

4cos 2A -4cos A +1=0, ∴cos A =, 2

0︒

b 2+c 2-a 2

(2)由余弦定理得:cos A =2bc

1b 2+c 2-a 21 cos A =∴=∴(b +c ) 2-a 2=3bc . 22bc 2

⎧b +c =3⎧b =1⎧b =2a =b +c =3代入上式得:bc =2 由⎨得:⎨或⎨. bc =2c =2c =1⎩⎩⎩解析(1)由4sin 2

【点睛】正弦定理和余弦定理在解斜三角形中应用比较广泛. 【范例3】已知△ABC 的周长为6,BC , CA , AB 成等比数列,求

(1)△ABC 的面积S 的最大值; (2)BA BC 的取值范围. 解析设BC , CA , AB 依次为a ,b ,c ,则a+b+c=6,b ²=ac.

a 2+c 2-b 2a 2+c 2-ac 2ac -ac 1=≥=, 在△ABC 中得cos B =2ac 2ac 2ac 2

πa +c 6-b =, 从而0

故有0

.又b =≤322

11212π(1)S =ac sin B =b sin B ≤⋅2⋅sin =

S max = 2223

a 2+c 2-b 2(a +c ) 2-2ac -b 2

=(2)BA BC =ac cos B = 22

(6-b ) 2-3b 2

==-(b +3) 2+27. 2 0

【点睛】三角与向量结合是高考命题的一个亮点. 问题当中的字母比较多,这就需要我们采用消元的思想,想办法化多为少,消去一些中介的元素,保留适当的主变元.主变元是解答问题的基本元素,有效的控制和利用对调整解题思路是十分有益处的.

【变式】在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c, △ABC 的外接圆半径R=,且满足cos C 2sin A -sin C =. cos B sin B

(1) 求角B 和边b 的大小;

(2) 求△ABC 的面积的最大值。

解析(1) 由cos C 2sin A -sin C =整理得sinBcosC+cosBsinC=2sinAcosB cos B sin B

1π∴sin(B+C)= 2sinAcosB ∴sinA =2sinAcosB ∴cosB=∴B= 23

∵ b=2RsinB ∴b=3

12π-A ) (2)∵S ∇ABC =ac sin B =3R 2sin A sin C =3sin A sin(23

33⎡π1⎤sin(2A -) +⎥ ⎢2⎣62⎦

π93∴当A=时, S ∇ABC 的最大值是 . 34=

【点睛】三角函数的最值问题在三角形中的应用

【范例4】某观测站C 在城A 的南20˚西的方向上,由A 城出发有一条公路,走向是南40˚东,在C 处测得距C 为31千米的公路上B 处有一人正沿公路向A 城走去,走了20千米后,到达D 处,此时C 、D 间距离为21千米,问还需走多少千米到达A 城?

解析据题意得图02,其中BC =31千米,BD =20千米,CD =21千米,∠CAB=60˚.

设∠ACD = α,∠CDB = β.在△CDB 中,由余弦定理得:

CD 2+BD 2-BC 2212+202-3121cos β===-, 2⋅CD ⋅BD 2⨯21⨯207

43sin β=-cos 2β=. 7

sin α=sin (180︒-∠CAD -∠CDA )

=sin (180︒-60︒-180︒+β)

43115⨯+⨯=. 727214

CD 215215⋅sin α=⋅=⨯=15. 在△ACD 中得AD =sin A sin 60︒1414=sin (β-60︒)=sin βcos 60︒-cos βsin 60︒=

2

所以还得走15千米到达A 城.

【点晴】运用解三角形的知识解决实际问题时,关键是把题设条件转化为三角形中的已知元素,然后解三角形求之.

【变式】已知半圆O 的直径AB=2,P 为AB 延长线上一点,OP=2,Q 为半圆上任意一点,以PQ 为一边作等边三角形PQR (P 、Q 、R 为顺时针排列),问点Q 在什么位置时,四边形OPRQ 面积最大,并求这个最大面积.

解析设∠POQ =x (0︒

∴∆PQR 面积S 1=35 PQ 2=-cos x ,44

而△POQ 面积S 2=sin x ,

∴四边形OPRQ 面积

S =

S 1+S 2=

5+(sinx -cos x ) 4

=553+2sin(x -60︒), ∴当x =150︒, S max =+2. 44

【点睛】三角函数在实际问题中的应用问题.

★★★自我提升

1.在直角三角形中,两锐角为A 和B ,则sinA·sinB( B )

(A ). 有最大值11和最小值 (B ). 有最大值但无最小值 22

(C ). 既无最大值也无最小值(D ). 有最大值1但无最小值 AB AC 2.已知非零向量AB 与AC 满足(+). BC =0且AB AC AB AB AC 1. =. 则∆ABC 为AC 2

( D )

(A )等边三角形 (B )直角三角形

(C )等腰非等边三角形 (D )三边均不相等的三角形

3.△ABC 中,3sinA+4cosB=6,3cosA+4sinB=1,则∠C 的大小是( A )

(A )π5ππ5ππ2π(B )(C )或(D )或 663663

-1-11-1- (B)arcsin (C)arccos (D)arcsin 2222

1

24. 一个直角三角形三内角的正弦值成等比数列,其最小内角为( A ) (A)arccos5. 已知a +1,a +2,a +3是钝角三角形的三边,则a 的取值范围是. (0,2) 6.已知定义在R 上的偶函数y =f (x ) 在区间[0, +∞) 上单调递增, 若f () =0,

ππ2π∆ABC 的内角A 满足f (cosA )

7.数列{a n }中,首项a 1=2,前n 项和为S n ,且4tS n +1-(3t +8) S n =8t (t

(1)判断数列{a n }是否为等比数列,并证明你的结论?

(2)若对每个正整数n ,以a n ,a n+1,a n+2为边长都能构成三角形,求t 的取值范围。 解析 (1)略

【文】在∆ABC 中,A . B . C 的对边分别为a . b . c 。

(1) 若a,b,c 成等比数列,求f(B)=sinB+3cosB 的值域。

π(2) 若a,b,c 成等差数列,且A-C=,求cosB 的值。 3

a 2+c 2-b 22ac -ac 1222≥= 解析(1) ∵b =ac , a +c ≥2ac cos B =2ac 2ac 2

ππ当且仅当a =c 时取等号, 0

ππ2π∵

π(2) ∵a +c =2b , ∴ sinA+sinC=2sinB ∵A -C =, A +C =π-B 3(2

)t

2πB πB 2πB π- C=-∴sin(-)+sin(-3232323

B B B =2*2sin cos , ∵cos 展开, 化简, 得cos 222

52B = ∴ cosB=1-2sin 28∴A =B )=2sinB 2B B 3≠0, ∴sin = 224

8.在正三角形ABC 的边AB 、AC 上分别取D 、E 两点,使沿线段DE 折叠三角形时,顶点A 正好落在边BC 上,在这种情况下,若要使AD 最小,求AD ∶AB 的值.

解析按题意,设折叠后A 点落在边BC 上改称P 点,显然A 、P 两点关于折线DE 对称,又设∠BAP =θ,∴∠DP A =θ,∠BDP =2θ,再设AB =a ,AD =x ,

∴DP =x . 在△ABC 中,∠APB =180°-∠ABP -∠BAP =120°-θ, a sin θBP AB 由正弦定理知:. ∴BP = =sin(120︒-θ) sin BAP sin APB

DP BP x ⋅sin θa sin θx sin 2θ=, 所以BP =, 从而=在△PBD 中,, sin DBP sin BDP sin 60︒sin(120︒-θ) sin 60︒

a sin θ⋅sin 60︒3a =. sin 2θ⋅sin(120︒-θ) 2sin(60︒+2θ) +3

∵0°≤θ≤60°,∴60°≤60°+2θ≤180°,

∴当60°+2θ=90°,即θ=15°时,sin(60°+2θ)=1,

3a =(23-3) a ,即AD 最小, 此时x 取得最小值2+3∴x =

∴AD ∶DB =23-3.

【文】在∆ABC 中,a , b , c 分别为角A , B , C 的对边,且满足A 4c 2-27c B o +C s 2= ) 2

(1)求角A 大小;

(2)若b +c =3,当a 取最小值时,判断∆ABC 的形状.

解析(1) A +B +C =π,

A 7∴4cos 2-cos 2(B +C ) =2(1+cos A ) -cos 2A =-2cos 2A +2cos A +3=, 22

11∴2cos 2A -2cos A +=0.∴cos A =, 22

0

b 2+c 2-a 2

222(2)由余弦定理cos A =,得 bc =b +c -a . 2bc

b +c 293∴a 2=(b +c ) 2-3bc =9-3bc ≥9-3() =,∴a ≥. 242

33所以a 的最小值为,当且仅当b =c =时取等号.此时∆ABC 为正三角形. 22

解三角形 检测题

班级姓名学号成绩

一、选择题:

1.在△ABC 中,下列式子不正确的是

A .a =b +c -2bc cos A B .a :b :c =sin A :sin B :sin C

C .S ∆ABC =2221AB BC sin A D .b =2R sin B 2

02.在△ABC 中,A =

15A -cos (B +C )的值为

A

B

C

D .2 3.在△ABC 中,若AB =AB AC +BA BC +CA CB ,则△ABC 是

A .等边三角形 B .直角三角形 C .锐角三角形 D .钝角三角形

4.1+cos A = 2 b +c ,则三角形的形状为 c

A =A .直角三角形 B .等腰三角形或直角三角形 C .正三角形 D .等腰直角三角形 5.在△ABC

中,a =2, b =

A .π4,则B 等于 ππ2πππ5π B .或 C . D .或 363366

6.在△ABC 中,已知(b +c ):(c +a ):(a +b )=4:5:6,则此三角形的最大内角是

A .1200 B .1500 C .600 D .900

7.在△ABC 中,“A=B”是“sin 2A =sin 2B ”的

A .充分必要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件

8.锐角△ABC 中,B=2A,则b 的取值范围是 a

A .(-2,2) B .(0,2) C

二、填空题: D

.) 9.在△ABC 中,若A =120, AB =5, BC =7,则AC=; 0

15 10.在△ABC 中,BA AC

11.一艘船上午9:30在A 处,测得灯塔S 在它的北偏东300,处,之后它继续沿正北方向匀速航行,上午10:00到达B 处,此时又测得灯塔S 在它的北偏东750,

且与它相距里,此船的航速是;

12.在锐角三角形ABC 中,已知AB =4, AC =1,S ∆ABC ,则∠BAC=,AB AC =.

三、解答题:

13.已知三角形ABC 的外接圆半径为1,且角A 、B 、C 成等差数列,若角A ,B ,C 所对的边长分别为a , b , c ,求a +c 的取值范围.

14.在△ABC

中,sin A +cos A =

22AC =2, AB =3,求tan A 的值和三角形的面积.

15.△ABC 的三个内角为A 、B 、C ,求当A 为何值时,cos A +2cos

求出这个最大值。

16.在△ABC 中,角A ,B ,C 的对边分别是a , b , c ,且c o s A =

的值; ⑵ 若b =2, S ∆ABC =3,求a .

B +C 取得最大值,并242B +C +cos 2A . ⑴ 求sin 52

参考答案

一、选择题:

1 C 2 C 3 B 4 A

二、填空题:

9. 3 10. 30° 11.32海里/小时 12.60° 2

三、解答题: 5 A 6 B 7 B 8 D

13.a 2+c 2∈

(3,6) 14.tan A =-2

B +C πA =-22215.解:∵A 、B 、C 为△ABC 的三内角 ∴A +B +C =π∴

∴cos A +2cos

∴cos A +2cos B +C A A A ⎛πA ⎫=cos A +2cos -⎪=cos A +2sin =1-2sin 2+2sin 2222⎝22⎭B +C A A =-2sin 2+2sin +1 222

2A B +C 1⎫3⎛令x =sin 则cos A +2cos =-2x 2+2x +1=-2 x -⎪+ 222⎭2⎝

∵A 是△ABC 的内角 ∴0

∴x 可以取到 ∴0

1B +C 3=为其最大值。 ∴当x =时,cos A +2cos 222

A 1 A A ∴A =60 此时sin =,0

16. (1)∵A ,B ,C 是△ABC 的内角 ∴A +B +C =180 ∴B +C πA =- 222∴sin 2

B +C A 11⎛πA ⎫+cos 2A =sin 2 -⎪+cos 2A =cos 2+cos 2A =cos A ++2cos 2A -12222⎝22⎭B +C 11+cos 2A =2cos 2A +cos A - 222

2∴sin 24B +C ⎛4⎫14113 cos A =∴sin 2+cos 2A =2⨯ ⎪+⨯-=. 52⎝5⎭25210

(2)∵A 是△ABC 的内角 ∴sin A >0又 cos A =

又S ∆ABC =453∴sin A = 5113⋅b ⋅c ⋅sin A =⨯2⨯⨯c =3∴c =5. 225

b 2+c 2-a 222+52-a 24∴cos A ===∴a 2=13. 2bc 2⨯2⨯55

a 是△ABC 的一边

∴a >0∴a =


相关内容

  • 人教版高中数学必修(1-5)目录
    必修一(高一) 第一章 集合与函数概念 一 总体设计 二 教科书分析 1.1 集合 1.2 函数及其表示 1.3 函数的基本性质 实习作业 三 自我检测题 四 拓展资源 第二章 基本初等函数(Ⅰ) 一 总体设计 二 教科书分析 2.1 指数 ...
  • 20**年人教版高一数学必修二第二章点.直线.平面之间的位置关系作业题及答案解析第2章 2.2.2
    千思兔在线教育http://www.qiansitu.com 2.2.2 平面与平面平行的判定 [课时目标] 1.理解平面与平面平行的判定定理的含义.2.能运用平面与平面平行的判定定理,证明一些空间面面平行的简单问题. 1.平面α与平面β平 ...
  • 高中微积分教学探究
    高中微积分教学探究 张哓波(B00111623) 导师:林磊副教授 [摘要]在上海的高中阶段,自上世纪90年代中期以来,已经试点了好几年微积分的内容.但于全国而言,从2001年推广的试验本教材才第一次出现微积分,并将在2004年的高考试卷中 ...
  • 人教版必修4[生活与哲学] 哲学期中复习.doc
    <生活与哲学>单元一复习讲义 一.[知识体系] 哲学与世界观 三对关系哲学与世界观.方法论 任务: 哲学与具体科学 唯物主义 思维和存在何者为第一性 基本问题:思维(意识)与存在 (物质)的关系问题 哲 基本观点:物质是本原的, ...
  • 高中生物课程改革中的主要问题和对策
    高中生物课程改革中的主要问题和对策 人民教育出版社 课程教材研究所 赵占良 普通高中生物课程改革实验已经三年.三年来,实验区不断扩大,各级教育行政部门和教研部门高度重视,广大教师积极转变观念,改进教学方式,积累了许多宝贵经验,也遇到不少问题 ...
  • 人教版必修5课标解读_语文_课标解读_人教版
    人教版必修5课标解读 一.构成 语文必修5由小说.古代散文.文艺学论文.自然科学论文四个单元构成. 二.要求 <课标>对阅读教学的总体目标提出了以下八个方面的要求: 1.在阅读与鉴赏活动中,不断充实精神生活,完善自我人格,提升人 ...
  • 高中数学优秀说课稿
    高中数学优秀说课稿 等差数列 本节课讲述的是人教版高一数学(上)§3.2等差数列(第一课时)的内容. 一.教材分析 1.教材的地位和作用: 数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用.一方面, 数列作为一种 ...
  • 天上的街市(人教版七年级必修教案设计)
    学习目标 1.有感情地朗读和背诵. 2.品味诗句,感悟意境. 3.理解诗中联想和想像的作用. 课前预习 1.给下列词语中的加点字注音. 缥渺(     )(     )灯笼(     )甚(      ) 2.给下列各组形似字注音并组词. ...
  • 函数概念说课稿
    <函数的概念>说课稿 棠湖中学 唐小文 各位专家.各位老师: 大家好! 今天我说课的题目是<函数的概念>,本课题是人教A 版必修1中1.2的内容, 计划安排两个课时,本课时的内容为:函数的概念.三要素及简单函数的定义 ...
  • 人教版必修一 细胞器 教学设计 彭庆
    第三章 细胞的基本结构 第2节 细胞器-系统内的分工合作 陕西省丹凤中学生物组 彭庆 一.设计思想 关于细胞的结构和功能等微观水平的内容,离学生的生活经验较远,学习起来有一定的难度和挑战性.因此教学过程既要突出学生的主动参与,又要强调教师的 ...