变频器的节能计算方法 - 范文中心

变频器的节能计算方法

09/04

现有一台250KW 风机, 现采用星--三角起动运行, 工作电流太约在360A 左右, 如果改成变频器, 一个小时能节多少电, 太概多长时间能收回成本.

变频器节能计算方法

例如:当从50Hz 降至45Hz 得

公式:P45/P50=45(3次方)/50(3次方)

P45=0.729P50

(2)当从50Hz 降至45Hz 得

已知:单台冷却器在工频耗电功率为250KW/h。

(3)∵P45=0.729P50=0.729×250=182.28 KW/h

(4)单台电机节能:250-182.25=67.75 KW/h;为原耗电量节约为67.75/250×100%=27.1%

(5)年节能:250kw×24h×30d×12m×27.1%=585360KW ;按1KW/h电费0.45元计算年节约共计585360×0.45=263412元。

2. 公式:P45/P50=45(3次方)/50(3次方)

P45=0.729P50

我想知道这个叫什么公式, 这个公式怎么来的?

公式:P45/P50=45(3次方)/50(3次方)

这个公式是由风机工作特性决定的,由于风机是二次方负载,轴功率与转速的三次方成正比。

风机水泵类负载使用高压变频器节能计算

风机水泵工作特性

风机水泵特性: H=H0-(H0-1)*Q2

H-扬程

Q-流量

H0-流量为0 时的扬程

管网阻力: R=KQ2

R-管网阻力

K-管网阻尼系数

Q-流量

注:上述变量均采用标么值,以额定值为基准,数值为1 表示实际值等于额定值

风机水泵轴功率P : P= KpQH/ηb

P-轴功率

Q-流量;

H-压力;

ηb -风机水泵效率;

Kp-计算常数;

流量、压力、功率与转速的关系:

Q1/Q2 = n1/n2; H1/H2 =(n1/n2)2; P1/P2 =(n1/n2)3

■ 变阀控制

变阀调节就是利用改变管道阀门的开度,来调节泵与风机的流量。变阀调节时,泵或风机的功率基本不变,泵或风机的性能曲线不变,而管道阻力特性曲线发生变化,泵或风机的性能曲线与新的管道阻力特性曲线的交点处就是新的工作点。

■ 变频控制

变频调节就是利用改变性能曲线方法来改变工作点,变速调节中没有附加阻力,是比较理想的一种调节方法。通过变频器改变电源的工作频率,从而实现对交流

电机的无级调速。泵和风机采用变速调节时,其效率几乎不变,流量随转速按一次方规律变化,而轴功率按三次方规律变化。同时采用变频调节,可以降低泵和风机的噪声,减轻磨损,延长使用寿命。

■ 节能计算示例

假设电动机的效率=98%

IPER 高压变频器的效率=97%(含变压器)

额定风量时的风机轴功力:1000kW

风机特性:风量Q 为0 时,扬程H 为1.4p.u (标么值,以额定值为基准) ;设曲

线特性为H=1.4-0.4Q2

年运行时间为:8000 小时

风机的运行模式为:风量100%,年运行时间的20%

风量70%,年运行时间的50%

风量50%,年运行时间的

30%

变阀调节控制风量时

假设P100 为100%风量的功耗,P70 为70%风量的功耗,P50 为50%风量的功耗

P100=1000/0.98 = 1020kW

P70=1000 x 0.7 x (1.4-0.4x0.72)/0.98 = 860kW

P50=1000 x 0.5 x (1.4-0.4x0.52)/0.98 = 663kW

年耗电量为:1020 x 8000 x 0.2 + 860 x 8000 x 0.5 + 663 x 8000 x 0.3=6,663,200KWH

假设电费以0.50 元/kWh 计算,年耗电成本为: 6663200 x 0.5=3,331,600 元

变频调节控制风量时

假设P100 为100%风量的功耗,P70 为70%风量的功耗,P50 为50%风量的功耗

P100=1000/0.98 = 1020kW

P70=1000 x 0.7 x (1.4-0.4x0.72)/0.98 = 860kW

P50=1000 x 0.5 x (1.4-0.4x0.52)/0.98 = 663kW

年耗电量为:1020 x 8000 x 0.2 + 860 x 8000 x 0.5 + 663 x 8000 x 0.3=6,663,200KWH

假设电费以0.50 元/kWh 计算,年耗电成本为: 6663200 x 0.5=3,331,600 元

变频调节控制风量时

假设P100 为100%风量的功耗,P70 为70%风量的功耗,P50 为50%风量的功耗

P100 = 1000 / 0.98 /0.97 = 1052kW

P70 = 1000 x 0.73 / 0.98 / 0.97 = 360kW

P50 = 1000 x 0.53 / 0.98 / 0.97 = 131kW

年耗电量为:1052 x 8000 x 0.2 + 360 x 8000 x 0.5 + 131 x 8000 x 0.3

=3,437,600KWH

假设电费以0.5 元/kWh 计算,年耗电成本为3,437,600 x 0.5=1,718,800 元

1 年所节省的电费

3,331,600 – 1,718,800 = 1,612,800 元

节电率为 1,612,800/3,331,600 = 48.3%

变频器的节能计算方法

1、根据已知风机、泵类在不同控制方式下的流量-负载关系曲线和现场运行的负荷变化情况进行计算。

以一台IS150-125-400型离心泵为例,额定流200.16m3/h,扬程50m ;配备Y225M-4型电动机,额定功率45kW 。泵在阀门调节和转速调节时的流量-负载曲线。根据运行要求,水泵连续24小时运行,其中每天11小时运行在90%负荷,

13小时运行在50%负荷;全年运行时间在300天。则每年的节电量为: W1=45×11(100%-69%)×300=46035kW·h

W2=45×13×(95%-20%)×300 =131625kW·h

W = W1+W2=46035+131625=177660kW·h

每度电按0.5元计算,则每年可节约电费8.883万元。

2、根据风机、泵类平方转矩负载关系式:P / P0=(n / n0)3计算,式中为P0额定转速n0时的功率;P 为转速n 时的功率。 以一台工业锅炉使用的22 kW 鼓风机为例。运行工况仍以 24小时连续运行,其中每天11小时运行在90%负荷(频率按46Hz 计算, 挡板调节时电机功耗按98%计算),13小时运行在50%负荷(频率按20Hz 计算,挡板调节时电机功耗按70%计算);全年运行时间在300天为计算依据。则变频调速时每年的节电量为:

W1=22×11×[1-(46/50)3]×300=16067kW·h

W2=22×13×[1-(20/50)3]×300=80309kW·h

Wb = W1+W2=16067+80309=96376 kW·h

挡板开度时的节电量为:

W1=22×(1-98%)×11×300=1452kW·h

W2=22×(1-70%)×11×300=21780kW·h

? Wd = W1+W2=1452+21780=23232 kW·h

相比较节电量为:W= Wb-Wd=96376-23232=73144 kW·h

每度电按0.5元计算,则采用变频调速每年可节约电费3.657万元。 某工厂离心式水泵参数为:离心泵型号6SA-8,额定流量53. 5 L/s,扬程50m ;所配电机Y200L2-2型37 kW 。对水泵进行阀门节流控制和电机调速控制情况下的实测数据记录如下:

流 量L/s 时 间(h ) 消耗电网输出的电能(kW ·h ) 阀门节流调节 电机变频调速

47 2 33.2×2=66.4 28.39×2=56.8

40 8 30×8=240 21.16×8=169.3

30 4 27×4=108 13.88×4=55.5

20 10 23.9×10=239 9.67×10=96.7

合计 24 653.4 378.3

相比之下,在一天内变频调速可比阀门节流控制节省275.1 kW·h 的电量,节电率达42.1%。

内蒙古恒压供水节电改造方案

一. 节能原理

根据流体力学理论,电机轴功率P 和风量Q 、压力H 之间的关系为: P=K*H*Q/η

其中K 为常数;

η为效率。

它们与转速N 之间的关系为:

Q1/Q2=N1/N2

H1/H2=(N1/N2)2

P1/P2=(N1/N2)3

图中曲线1为风机在恒速下压力,H 和流量Q 的特性曲线,曲线2是管网风阻特性(阀门开度为100%)。假设风机在设计时工作在A 点的效率最高,输出风量Q1为100%,此时的轴功率P1=Q1*H1与面积AH10Q1成正比。根据工艺要求,当风量需从Q1减少到Q (例如70%)时,如采用调节阀门的方法相当于增加了管网阻力,使管网阻力特性变到为曲线3,系统由原来的工况A 点变到新的工况B 点运行,由图中可以看出,风压反而增加了,轴功率P2与面积BH20Q2成正比,减少不多。 如果采用变频调速控制方式,将风机转速由N1降到N2,根据风机的比例定律,可以画出在转速N2下压力H 和流量Q 特性如曲线4所示,可见在满足同样风量Q2的情况下,风压H3将大幅度降低,功率P3(相等于面积CH30Q2)也随着显著减少,节省的功率△P=△HQ2与面积BH2H3C 成正比,节能的效果是

十分明显的。

由流体力学可知,风量Q 与转速的一次方成正比,风压H 与转速的平方成正比,轴功率P 与转速的立方成正比,当风量减少,风机转速下降时,起功率下降很多。 例如风量下降到80%,转速也下降到80%时,则轴功率下降到额定功率的51%;如风量下降到50%,功率P 可下降到额定功率的13%,当然由于实际工况的影响,节能的实际值不会有这么明显,即使这样,节能的效果也是十分明显的。

因此在有风机、水泵的机械设备中,采用变频调速的方式来调节风量和流量,在节能上是一个最有效的方法。

二、工作原理

Invt 节能控制器采用最新电脑控制技术,利用压力传感器信号及有关电气控制信号,根据供水管道的压力值控制水泵电机转速,将压力维持在所需的压力值上,将平时不必消耗的能量节省下来,从而达到节电的目的。

2、基本工作原理框图:

3、 Invt节能控制器特点:

l 保留原有控制程序不变,安装简便。采用市电/节能控制方式,以备故障时不影响生产。

l 利用电气控制,可将原有开、关式压力控制改为连续压力控制,压力控制更精确,供水压力更平稳。

l 软起动装置,无级调速控制,可避免启动电流冲击。

l 系统功率因数大大提高,几乎没有无功损耗。

l 操作方便,高效的计算机控制,故障率几乎为零。同步运行,不需任何调节。

三、节电效果预测

Invt 节能控制器可最大程度上降低水泵的耗电量,由于实现了无级调速控制,水泵的耗电量就与设备使用情况密切相关。经加装Invt 节能控制器进行节电改造后,我们预计总体上的节电效果一般可达到25%~65%,有些可达到更高的水平。

变频调速技术在风机、泵类应用中的节能分析

摘要:在工业生产和产品加工制造业中,风机、泵类设备应用范围广泛;其电能消耗是一笔不小的生产费用开支。随着经济改革的不断深入,市场竞争的不断加剧;节能降耗业已成为降低生产成本、提高产品质量的重要手段之一。关键字:变频调速节能风机泵

一、引言

在工业生产和产品加工制造业中,风机、泵类设备应用范围广泛;其电能消耗和诸如阀门、挡板相关设备的节流损失以及维护、维修费用占到生产成本的7%~25%,是一笔不小的生产费用开支。随着经济改革的不断深入,市场竞争的不断加剧;节能降耗业已成为降低生产成本、提高产品质量的重要手段之一。 而八十年代初发展起来的变频调速技术,正是顺应了工业生产自动化发展的要求,开创了一个全新的智能电机时代。一改普通电动机只能以定速方式运行的陈旧模式,使得电动机及其拖动负载在无须任何改动的情况下即可以按照生产工艺要求调整转速输出,从而降低电机功耗达到系统高效运行的目的。

八十年代末,该技术引入我国并得到推广。现已在电力、冶金、石油、化工、造纸、食品、纺织等多种行业的电机传动设备中得到实际应用。目前,变频调速技术已经成为现代电力传动技术的一个主要发展方向。卓越的调速性能、显著的节电效果,改善现有设备的运行工况,提高系统的安全可靠性和设备利用率,延长设备使用寿命等优点随着应用领域的不断扩大而得到充分的体现。

二、综述

通常在工业生产、产品加工制造业中风机设备主要用于锅炉燃烧系统、烘干系统、冷却系统、通风系统等场合,根据生产需要对炉膛压力、风速、风量、温度等指标进行控制和调节以适应工艺要求和运行工况。而最常用的控制手段则是调节风门、挡板开度的大小来调整受控对象。这样,不论生产的需求大小,风机都要全速运转,而运行工况的变化则使得能量以风门、挡板的节流损失消耗掉了。在生产过程中,不仅控制精度受到限制,而且还造成大量的能源浪费和设备损耗。从而导致生产成本增加,设备使用寿命缩短,设备维护、维修费用高居不下。

泵类设备在生产领域同样有着广阔的应用空间,提水泵站、水池储罐给排系统、工业水(油)循环系统、热交换系统均使用离心泵、轴流泵、齿轮泵、柱塞泵等设备。而且,根据不同的生产需求往往采用调整阀、回流阀、截止阀等节流设备进行流量、压力、水位等信号的控制。这样,不仅造成大量的能源浪费,管路、阀门等密封性能的破坏;还加速了泵腔、阀体的磨损和汽蚀,严重时损坏设备、影响生产、危及产品质量。

风机、泵类设备多数采用异步电动机直接驱动的方式运行,存在启动电流大、机械冲击、电气保护特性差等缺点。不仅影响设备使用寿命,而且当负载出现机械故障时不能瞬间动作保护设备,时常出现泵损坏同时电机也被烧毁的现象。 近年来,出于节能的迫切需要和对产品质量不断提高的要求,加之采用变频调速器(简称变频器)易操作、免维护、控制精度高,并可以实现高功能化等特点;因而采用变频器驱动的方案开始逐步取代风门、挡板、阀门的控制方案。

变频调速技术的基本原理是根据电机转速与工作电源输入频率成正比的关系:n=60f(1-s )/p ,(式中n 、f 、s 、p 分别表示转速、输入频率、电机转差率、电机磁极对数);通过改变电动机工作电源频率达到改变电机转速的目的。 变频器就是基于上述原理采用交-直-交电源变换技术,电力电子、微电脑控

制等技术于一身的综合性电气产品。

三、节能分析

通过流体力学的基本定律可知:风机、泵类设备均属平方转矩负载,其转速n 与流量Q ,压力H 以及轴功率P 具有如下关系:Q∝n,H∝n2,P∝n3;即,流量与转速成正比,压力与转速的平方成正比,轴功率与转速的立方成正比。 以一台水泵为例,它的出口压头为H0(出口压头即泵入口和管路出口的静压力差),额定转速为n0, 阀门全开时的管阻特性为r0, 额定工况下与之对应的压力为H1, 出口流量为Q1。

在现场控制中,通常采用水泵定速运行出口阀门控制流量。当流量从Q1减小50%至Q2时,阀门开度减小使管网阻力特性由r0变为r1,系统工作点沿方向I 由原来的A 点移至B 点;受其节流作用压力H1变为H2。水泵轴功率实际值(kW )可由公式:P=Q·H/(ηc·ηb )×10-3得出。其中,P 、Q 、H 、ηc 、ηb 分别表示功率、流量、压力、水泵效率、传动装置效率,直接传动为1。假设总效率(ηc·ηb )为1,则水泵由A 点移至B 点工作时,电机节省的功耗为AQ1OH1和BQ2OH2的面积差。如果采用调速手段改变水泵的转速n ,当流量从Q1减小50%至Q2时,那么管网阻力特性为同一曲线r0,系统工作点将沿方向II 由原来的A 点移至C 点,水泵的运行也更趋合理。在阀门全开,只有管网阻力的情况下,系统满足现场的流量要求,能耗势必降低。此时,电机节省的功耗为AQ1OH1和CQ2OH3的面积差。比较采用阀门开度调节和水泵转速控制,显然使用水泵转速控制更为有效合理,具有显著的节能效果。

另外,从图中还可以看出:阀门调节时将使系统压力H 升高,这将对管路和阀门的密封性能形成威胁和破坏;而转速调节时,系统压力H 将随泵转速n 的降低而降低,因此不会对系统产生不良影响。

从上面的比较不难得出:当现场对水泵流量的需求从100%降至50%时,采用转速调节将比原来的阀门调节节省BCH3H2所对应的功率大小,节能率在75%以

上。 与此相类似的,如果采用变频调速技术改变泵类、风机类设备转速来控制现场压力、温度、水位等其它过程控制参量,同样可以依据系统控制特性绘制出关系曲线得出上述的比较结果。亦即,采用变频调速技术改变电机转速的方法,要比采用阀门、挡板调节更为节能经济,设备运行工况也将得到明显改善。

四、节能计算

对于风机、泵类设备采用变频调速后的节能效果,通常采用以下两种方式进行计算:

1、根据已知风机、泵类在不同控制方式下的流量-负载关系曲线和现场运行的负荷变化情况进行计算。

以一台IS150-125-400型离心泵为例,额定流量200.16m3/h,扬程50m ;配备Y225M-4型电动机,额定功率45kW 。泵在阀门调节和转速调节时的流量-负载曲线如下图示。根据运行要求,水泵连续24小时运行,其中每天11小时运行在90%负荷,13小时运行在50%负荷;全年运行时间在300天。

则每年的节电量为:W1=45×11×(100%-69%)×300=46035kW·h W2=45×13×(95%-20%)×300=131625kW·h

W=W1+W2=46035+131625=177660kW·h

每度电按0.5元计算,则每年可节约电费8.883万元。

2、根据风机、泵类平方转矩负载关系式:P/P0=(n/n0)3计算,式中为P0额定转速n0时的功率;P 为转速n 时的功率。

以一台工业锅炉使用的22kW 鼓风机为例。运行工况仍以24小时连续运行,其中每天11小时运行在90%负荷(频率按46Hz 计算, 挡板调节时电机功耗按98%计算),13小时运行在50%负荷(频率按20Hz 计算,挡板调节时电机功耗按70%计算);全年运行时间在300天为计算依据。

则变频调速时每年的节电量为:W1=22×11×[1-(46/50)

3]×300=16067kW·h

W2=22×13×[1-(20/50)3]×300=80309kW·h

Wb=W1+W2=16067+80309=96376kW·h

挡板开度时的节电量为:W1=22×(1-98%)×11×300=1452kW·h W2=22×(1-70%)×11×300=21780kW·h

Wd=W1+W2=1452+21780=23232kW·h

相比较节电量为:W=Wb-Wd=96376-23232=73144kW·h

每度电按0.5元计算,则采用变频调速每年可节约电费3.657万元。 某工厂离心式水泵参数为:离心泵型号6SA-8,额定流量53.5L/s,扬程50m ;所配电机Y200L2-2型37kW 。对水泵进行阀门节流控制和电机调速控制情况下的实测数据记录如下:

流量L/s时间(h )消耗电网输出的电能(kW·h)

阀门节流调节电机变频调速

47233.2×2=66.428.39×2=56.8

40830×8=24021.16×8=169.3

30427×4=10813.88×4=55.5

201023.9×10=2399.67×10=96.7

合计24653.4378.3

相比之下,在一天内变频调速可比阀门节流控制节省275.1kW·h的电量,节电率达42.1%。

五、结束语

风机、泵类等设备采用变频调速技术实现节能运行是我国节能的一项重点推广技术,受到国家政府的普遍重视,《中华人民共和国节约能源法》第39条就把它列为通用技术加以推广。实践证明,变频器用于风机、泵类设备驱动控制场

合取得了显著的节电效果,是一种理想的调速控制方式。既提高了设备效率,又满足了生产工艺要求,并且因此而大大减少了设备维护、维修费用,还降低了停产周期。直接和间接经济效益十分明显,设备一次性投资通常可以在9个月到16个月的生产中全部收回。


相关内容

  • 螺杆空气压缩机的节能改造
    摘要 螺杆空气压缩机是一种比较新颖的压缩机因其可靠性高.操作维修方便.动力平衡性好.适应性强等优点,而广泛地应用于矿山.化工.动力.冶金.建筑.机械.制冷等工业部门. 工厂实际需求存在季节性及时间性波动,也导致用气量波动较大,所以空压机多数 ...
  • 建筑电气工程师手册目录
    前言 第1章 电气基础理论 1.1 电路基础理论 1.1.1 电路的基本概念 1.1.2 电路的基本定律 1.1.3 直流电路 1.1.4 磁路 1.1.5 交流电路 1.1.6 三相电路 1.2 正弦波振荡电路 1.3 直流稳压电源 1. ...
  • 一种新型的电梯能量回馈并网系统
    计算机系统应用 http://www.c-S-&org.ca 2012年第2l卷第3期 一种新型的电梯能量回馈并网系缈 彭继慎,王伟伟,宋立业 (辽宁工程技术大学电气与控制工程学院,葫芦岛125105) 摘要:针对普通电梯变频器不能 ...
  • PLC的变频调速恒压供水系统毕业设计
    烟台工程职业技术学院 机电 系 机电一体化 专业 2010 级 毕业设计(论文) 题 目: PLC的恒压供水系统设计 姓名 张凯 学号 2010060196 指导教师(签名) 二○ 年 月 日 摘 要 随着人民生活水平的日趋提高,新技术和先 ...
  • 变频器原理及应用论文11
    2010年8月 第38卷第16期 机床与液压 MACH INE TOOL& HYDRAUL ICS Aug. 2010 Vol..38 No..16 DOI: 10. 3969 / j.. issn..1001- 3881..201 ...
  • 空调恒温恒湿
    空调恒温恒湿 引言 冷媒水是工厂公用工程的基本系统.基于plc和变频器的冷媒水压力控制系统具有自动化程度高.高效节能.安全卫生.维护方便等优点:采用frofibus总线技术,扩展性高:上位计算机控制系统具有过程画面动态显示.流程管理及打印等 ...
  • 中国节能技术政策大纲
    中国节能技术政策大纲 为推动节能技术进步,提高能源利用效率,促进节约能源和优化用能结构,建设资源节约型.环境友好型社会,我们组织有关单位和专家,在广泛征求社会各界意见的基础上,重新修订<中国节能技术政策大纲>(以下简称<大 ...
  • 变频器.电抗器.滤波器介绍
    变频器解释: 变频器是把工频电源(50Hz或60Hz) 变换成各种频率的交流电源,以实现电机的变速运行的设备,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆成交流 ...
  • 12 配电与照明节能工程
    12 配电与照明节能工程 12.1 一般规定 12.1.1 本章适用于建筑节能工程配电与照明的施工质量验收. 12.1.2 建筑配电与照明节能工程验收的检验批划分应按本规范第3.4.1 条的规定执行.当需要重新划分检验批时,可按照系统.楼层 ...
  • 技术改造项目可行性报告内容
    技术改造项目可行性报告内容 一.总论 1.技术研发目的: 在能源日趋紧张的今天,积极为工矿企业提供稳定.可靠.高效.节能的控 制系统,为客户节约降低能耗,减少成本,提高产品竞争力,实现双赢.多赢.响应国家的"节能.减排.降耗&qu ...