20**年 天津大学化工学院 实验报告:共沸精馏doc - 范文中心

20**年 天津大学化工学院 实验报告:共沸精馏doc

04/24

化工专业实验报告

实验名称:实验人员:实验地点:天大化工技术实验中心室实验时间:

2012年5月25日

班级/学号:班指导教师:实验成绩:

共沸精馏

一、

实验目的

1.通过实验加深对共沸精馏过程的理解;

2.熟悉精馏设备的构造,掌握精馏操作方法;3.能够对精馏过程做全塔物料衡算;

4.

学会使用气相色谱分析气、液两相组成。

二、实验原理

精馏是利用不同组份在气-液两相间的分配,通过多次气液两相间的传质和传热来达到分离的目的。对于不同的分离对象,精馏方法也会有所差异。例如,分离乙醇和水的二元物系。由于乙醇和水可以形成共沸物,而且常压下的共沸温度和乙醇的沸点温度极为相近,所以采用普通精馏方法只能得到乙醇和水的混合物,而无法得到无水乙醇。为此,在乙醇-水系统中加入第三种物质,该物质被称为共沸剂。共沸剂具有能和被分离系统中的一种或几种物质形成最低共沸物的特性。在精馏过程中共沸剂将以共沸物的形式从塔顶蒸出,塔釜则得到无水乙醇。这种方法就称作共沸精馏。

乙醇-水系统加入共沸剂苯以后可以形成四种共沸物。现将它们在常压下的共沸温度、共沸组成列于表1。为了便于比较,再将乙醇、水、苯三种纯物质常压下的沸点列于表2。

表1乙醇水-苯三元共沸物性质

共沸物(简记)乙醇-水-苯(T)乙醇-苯(ABZ)苯-水(BWZ)乙醇-水(AWZ)

共沸点/℃64.8568.2469.2578.15

共沸物组成,t%

乙醇18.532.70.095.57

水7.40.08.834.43

苯74.167.6391.170.0

表2乙醇、水、苯的常压沸点

物质名称(简记)沸点温度(℃)

乙醇(A)78.3

水(W)

100

苯(B)80.2

从表1和表2列出沸点看,除乙醇-水二元共沸物的共沸物与乙醇沸点相近之外,其余三种共沸物的沸点与乙醇沸点均有10℃左右的温度差。因此,可以设法使水和苯以共沸物的方式从塔顶分离出来,塔釜则得到无水乙醇。整个精馏过程可以用图1来说明。图中A、B、W分别为乙醇、苯和水的英文字头;ABZ,AWZ,BWZ代表三个二元共沸物,T表示三元共沸物。图中的曲线为25℃下的乙醇、水、苯三元共沸物的溶解度曲线。该曲线的下方为两相区,上方为均相区。图中标出的三元共沸组成点T是处在两相区内。

以T为中心,连接三种纯物质A、B、W及三个二元共沸点组成点ABZ、AWZ、BWZ,将该图分

为六个小三角形。如果原料液的组成点落在某个小三角形内。当塔顶采用混相回流时精馏的最终结果只能得到这个小三角形三个顶点所代表的物质。故要想得到无水乙醇,就应该保证原料液的组成落在包含顶点A的小三角形内,即在ΔATABZ或ΔATAWZ内。从沸点看,乙醇-水的共沸点和乙醇的沸点仅差0.15℃,就本实验的技术条件无法将其分开。而乙醇-苯的共沸点与乙醇的沸点相差10.06℃,很容易将它们分离开来。所以分析的最终结果是将原料液的组成控制在ΔATABZ中。

图1中F代表未加共沸物时原料乙醇、水混合物的组成。随着共沸剂苯的加入,原料液的总组成将沿着FB连线变化,并与AT线交于H点,这时共沸剂苯的加入量称作理论共沸剂用量,它是达到分离目的所需最少的共沸剂量。上述分析只限于混相回流的情况,即回流液的组成等于塔顶上升蒸汽组成的情况。而塔顶采用分相回流时,由于富苯相中苯的含量很高,可以循环使用,因而苯的用量可以低于理论共沸剂的用量。分相回流也是实际生产中普遍采用的方法。它的突出优点是共沸剂的用量少,共沸剂提纯的费用低。

三、

1.

装置、流程及试剂

装置

本实验所用的精馏塔为内径Ф20×200mm的玻璃塔。内部上层装有Θ网环型Ф2×2mm的高效散装填料,下部装有三角网环型的高效散装填料。填料塔高度略高于1.2m。塔釜为一只结构特殊的三口烧瓶。上口与塔身相连:侧口用于投料和采样;下口为出料口;釜侧玻璃套管插入一只测温热电阻,用于测量塔釜液相温度,釜底玻璃套管装有电加热棒,采用电加热,加热釜料,并通过一台自动控温仪控制加热温度,使塔釜的传热量基本保持不变。塔釜加热沸腾后产生的蒸汽经填料层到达塔顶全凝器。为了满足各种不同操作方式的需要,在全凝器与回流管之间设置了一个特殊构造的容器。在进行分相回流时,它可以用作分相器兼回流比调节器;当进行混相回流时,它又可以单纯地作为回流比调节器使用。这样的设计既实现了连续精馏操作,又可进行间歇精馏操作。

此外,需要特别说明的是在进行分相回流时,分相器中会出现两层液体。上层为富苯相、下层为富水相。实验中,富苯相由溢流口回流入塔,富水相则采出。当间歇操作时,为了保证有足够高的溢流液位,富水相可在实验结束后取出。流程

2.

3.

试剂

实验试剂有80g乙醇(化学纯),含量95%;苯(分析纯)34.6g,含量99.5%。

四、

1.2.3.4.5.

实验步骤

将原料加入塔釜,打开电源,记录时间、塔釜及塔顶的初始温度和加热电流;30分钟后打开回流比,调至5:1,再20分钟后调至3:1;

溢流开始后,仍有水珠连续流出的条件下,将回流比调至1:1,再过10分钟后调至1:3至结束;

3小时后开始蒸出过量的苯,根据色谱分析结果,分次放出若干量蒸出液,直至将塔釜内苯内苯蒸净;

将所有蒸出液放入分液漏斗内,静置5分钟,将分离后的富苯相和富水相分别称重,并分别分析。

五、实验原始数据

表3精馏过程各时刻实验记录

设备编号:01

时刻

上段

下段

塔顶

塔釜

气相色谱峰面积

流比

加热电流/A

加热电流/A0.40.420.420.420.420.420.420.420.430.43

加热电流/A

温度/℃控温/℃

乙醇

14:1014:5015:1015:3015:5016:1016:3016:5017:1017:15

1:33:15:1

0.240.2250.2250.2250.2250.2250.2250.2250.230.23

0.310.280.280.290.280.280.280.30.30.3

28.163.062.863.263.863.863.863.964.764.7

27.571.876.077.777.477.477.377.377.977.9

-[***********]911302000

-[***********][***********][***********]

-[***********][**************]0

备注:1.气相色谱操作条件:压力为0.075MPa,汽化室温度为110℃,柱箱温度为135℃,检测室温度为

110℃。

2.各物质校正因子:f(Water)=0.742,f(Alcohol)=1.000,f(Benzene)=1.170。

六、

1.

实验数据处理

数据处理1:各阶段塔底组份分析时间

保留时间

水乙醇苯

0.2240.4680.3440.2460.4852.5700.2650.4912.5390.2670.4852.5520.2690.4902.5400.2740.4762.5110

峰面积/uV.s[***********][***********][***********][**************]44

百分含量(%)实际百分含量2.0315487.1070510.861412.1468596.949330.903820.7691696.724282.506560.7498097.131402.096060.5559697.347972.09606

0.014880.859700.12542

14:50

15:10

水乙醇苯

0.015993630.9733890.0106180.0056942210.9650460.029260.005554900.9696980.0247470.004116770.9714110.0244720.0029230950.9625860.0344910

15:30

水乙醇苯

15:50

水乙醇苯

16:10

水乙醇苯

16:30水乙醇苯

[1**********]743

0.3954196.644952.95964

16:50水

流比

加热电流/A

加热电流/A0.40.420.420.420.420.420.420.420.430.43

加热电流/A

温度/℃控温/℃

乙醇

14:1014:5015:1015:3015:5016:1016:3016:5017:1017:15

1:33:15:1

0.240.2250.2250.2250.2250.2250.2250.2250.230.23

0.310.280.280.290.280.280.280.30.30.3

28.163.062.863.263.863.863.863.964.764.7

27.571.876.077.777.477.477.377.377.977.9

-[***********]911302000

-[***********][***********][***********]

-[***********][**************]0

备注:1.气相色谱操作条件:压力为0.075MPa,汽化室温度为110℃,柱箱温度为135℃,检测室温度为

110℃。

2.各物质校正因子:f(Water)=0.742,f(Alcohol)=1.000,f(Benzene)=1.170。

六、

1.

实验数据处理

数据处理1:各阶段塔底组份分析时间

保留时间

水乙醇苯

0.2240.4680.3440.2460.4852.5700.2650.4912.5390.2670.4852.5520.2690.4902.5400.2740.4762.5110

峰面积/uV.s[***********][***********][***********][**************]44

百分含量(%)实际百分含量2.0315487.1070510.861412.1468596.949330.903820.7691696.724282.506560.7498097.131402.096060.5559697.347972.09606

0.014880.859700.12542

14:50

15:10

水乙醇苯

0.015993630.9733890.0106180.0056942210.9650460.029260.005554900.9696980.0247470.004116770.9714110.0244720.0029230950.9625860.0344910

15:30

水乙醇苯

15:50

水乙醇苯

16:10

水乙醇苯

16:30水乙醇苯

[1**********]743

0.3954196.644952.95964

16:50水

乙醇苯

17:10

水乙醇苯

17:15

水乙醇苯

0.4732.51200.4982.06100.4810

2852978938

96.962363.03764099.382780.6172201000

0.9927860.007214

2449181521

0.9927860.007214

2569100

10

数据处理2:富水相、富苯相及釜液的色谱分析结果(反应结束后)

质量/g

富水相

11.9

乙醇苯水

富苯相

29.6

乙醇苯水

釜液

63.7

乙醇苯

保留时间(min)0.1990.5032.2810.2250.5481.9110.2660.4812.407

[***********][***********][1**********]8峰面积/uV.s

百分含量(%)36.2837351.7482611.968016.6455424.1254269.229040.7951892.037587.16724

实际百分含量

0.2379776290.5764390.1855830.0448041990.219214

0.7359820.0058410.9111440.083014

数据处理3:色谱分析条件

保留时间/min(参考值)

校正因子(参考值)

实际百分含量用公式进行计算

0.2230.742

乙醇0.4601.000

苯2.1051.170

以反应釜液中的乙醇实际百分含量进行计算:P乙醇%=

原料乙醇和苯的色谱分析

原料乙醇

第一次

组分

水乙醇

保留时间(min)

0.2080.4490.2790.455

峰面积/uV.s

[***********]5135

百分含量(%)

6.8335193.166497.3380392.66197

第二次

水乙醇

原料苯组分

保留时间(min)

1.8521.930

峰面积/uV.s[1**********]4

百分含量(%)100.00000100.00000

第一次第二次

2.

做全塔物料衡算,并对共沸物形成的富水相和富苯相进行分析和衡算,求出塔顶

三元共沸物的组成。

1)对塔内乙醇进行物料衡算

原料液中乙醇含量:80*0.95=76g

由上表所得:富水相中乙醇质量分数:富水相中乙醇含量:11.90.576439=6.8596g富苯相中乙醇质量分数:

富苯相中乙醇含量:29.60.219214=6.48873g塔釜中乙醇含量:

则塔内残余乙醇的含量为:La=76-6.8596-6.48873-58.934=4.61277g

2)

对塔内苯进行物料衡算

原料液中苯含量34.6g

由上面表格中计算得到的实际百分比得:富水相中苯含量:富苯相中苯含量:塔釜液中苯的含量:

则塔内残余苯的含量为:Lb=34.6---=5.3185g

3)

对塔内水进行物料衡算

原料液中水含量为80*0.05=4g富苯相中水含量:富水相中水含量:

釜液中的水含量:mbw=0.005841=0.3721g

塔内残余水含量:4-1.3262-2.831962-0.3721=-0.5303g

4)

塔内总持液量为:

80+34.6-11.9-29.6-63.7=9.4g≈4.61277+5.3185-0.3721=9.5591g

5)

对物料衡算结果的分析:塔内总持液比例:

从上述计算可以看出,塔内持液占了不小的比例,其中既包括了乙醇,也包括了苯和水。当然除了塔内残留一部分外,可能还有一些乙醇通过各种可能途径挥发了。

对于塔内水的衡算结果为负值这一事实,经过分析,我们认为这是由于在进行塔釜产品衡算时,对气相色谱的分辨率设置过低,导致水的色谱峰没有被识别所造成。

塔顶三元共沸物组成计算组分水所占比例:相对误差:

组分乙醇所占比例:

6)

相对误差:组分苯所占比例:相对误差:

总结上述结果得到下表:

表5塔顶三元共沸物组成水

质量分数相对误差

35.4%

乙醇

七、

1.

思考题

如何计算共沸剂的加入量?

在指定的压力下,做水-乙醇-苯的三角相图;1)

根据相关文献在图上确定共沸物组成点(自2)

由度为1,所以务必确定是该压力下的共沸点组成),包括三元共沸物,所有可能的二元共沸物。按照实验原理中的说明做出下面的连线。由沸点参数可知,原料液组成应控制在ΔATABZ中;

连接F,B两点,交ΔATABZ于H和I,这两3)

点分别是加入共沸剂的最小量和最大量。

4)

从图上可以读出各线段长度。利用杠杆规则,若混合液的组成为I,则

mB=mF*|IF|/|BI|;若混合液组成为H,则mB=mF*|HF|/|BH|。I和H之间的组成点所用到的共沸剂量应在这两个值之间。

2.

需要测出哪些量才可以作全塔的物料衡算?具体的衡算方法是什么?

总共需要六个数据才能对全塔进行物料衡算,具体分别是:1、塔釜液质量mb;2、塔顶富水相质量mdw;3、塔顶富苯相质量mdb;4、塔釜残液各组分质量分数xbi;5、塔顶富水相各组分质量分数xdwi;6、塔顶富苯相各组分质量分数xdbi;7、原料液质量mf;8、原料液各组分的质量分数xfi。

具体衡算方法如下:忽略塔内总持液量的影响,对塔内各个组分列算式:

mf*xfi-mdw*xdwi-mdbi*xdbi-mb*xbi,如果结果近似等于0,则认为该组分在全塔范围内守恒。否则需要将塔内损失考虑在内。3.

将计算出的三元共沸物组成与文献值比较,求出其相对误差,并分析实验过程中产生误差的原因。

相对误差见表5。之所以会引起误差,主要是因为该求算方法计算的只是塔顶馏出液的组成,而塔顶馏出液实际上是三元共沸物与二元共沸物的混合液。该实验过程并没有很好地对三元共沸物蒸尽的临界点进行控制,因而没法按照精确方法计算。

八、参考文献

[1].EACoulson,etal,LaboratoryDistillationPractice,L.GeorgeNewsLtd,1958[2].ErichKrel,HandbookofLaboratoryDistillation,Amsterdam,Elsevier,1982

[3].陈洪钫,基本有机化工分离工程,北京:化学工业出版社1985

[4].FGShinskey,DistillationControlforProductivityandEnergyConservation2nded,New

York,McGraw-HillBookco,19842nd[5].HoanhNPham,etal.ChemicalEngineeringScience1990,45(7):1823


相关内容

  • 萃取精馏溶剂选择性的温度效应
    S 卷! 第T U 期! ! 第S U U W 年T U 月! ! V 3B " ! 3/8#" B M , -H &A " B _#'/E 98#'#&#--8&#+, &#& ...
  • 分离技术的发展与展望
    第29卷第3期 广西大学学报(自然科学版) () V o l . 29,N o. 3 α文章编号:100127445(2004) 0320247205 分离技术的发展与展望刘 琨1, 赖昭军2 (1. 广西大学化学化工学院, 广西南宁530 ...
  • 化工分离工程教学大纲
    <化工分离工程>教学大纲 一.课程基本信息 课程中文名称:分离工程 课程英文名称:Separation Technology 课程编号:06131070 课程类型:专业基础课 总 学 时:54 学 分: 3 适用专业:化学工程与 ...
  • 山东师范大学硕士论文格式(权威版免费版)
    落飞文花园 附件2-3 山东师范大学博士硕士学位论文格式暂行规定 为规范我校博士.硕士学位论文格式,提高学位论文质量,根据国家和学校有关学位授予细则的规定,对我校博士硕士学位论文的基本格式作如下规定: 一.印刷本学位论文格式 (一)论文内容 ...
  • 新型高效丝网除雾器的原理与应用
    第24卷第2期2004年6月 (p,,,7),,,),>,-曰 明胶科学与技术 1he Science肌d‰l咖岫0fG洳n V01.".№.2 Jun.2004. 凶-留.cc.cc<o'c<c00 J} 他山 ...
  • 连续精馏装置的热量衡算和节能
    连续精馏装置的热量衡算和节能 摘要:对连续精馏装置进行热量衡算,可以求得冷凝器何在废弃的热负荷以及冷却介质和加热介质的消耗量,并为设计这些换热设备提供基本数据. 关键词:节能 热量衡算 Continuous distillation uni ...
  • 11-化工原理期末试卷及答案
    一. 选择填空题: (每题5分,共20分) 1.(1) 如图所示,若敞口罐液面恒定,罐上方压强为Pa,忽略流动阻力损失,出水管 管径为d,则出水管的出口速度u与 有关. (A) H (B) H.d (C) d (D) Pa (E) H.d. ...
  • 窄馏分低芳烃溶剂油生产原料优选研究
    石油天然气学报(江汉石油学院学报)2009年2月第31卷第1期 JournalofOilandGasTechnology(J.JPI)Feb.2009V01.31No.1・151・ 窄馏分低芳烃溶剂油生产原料优选研究 唐善法(长江大学石油工 ...
  • 化工原理第五章 精馏 题
    五 蒸馏 汽液相平衡 1.1 苯(A)与氯苯(B)的饱和蒸汽压[mmHg]和温度[℃]的关系如下: t 80.92 90 100 110 120 130 131.8 p 0 A 760 1008 1335 1740 2230 2820 30 ...
  • 可持续发展与现代化工科学
    可持续发展与现代化工科学 " 可持续发展" 的观念于19 8 7 年联合国环境与发展署在<我们共同的未来>中首先提出, 并于1 9 92 年6 月被发表在<里约热内卢宣言>上, 从那以后人类开始把 ...