高中物理复习提纲 - 范文中心

高中物理复习提纲

07/13

高中物理知识点

第一章、力

一、力F :物体对物体的作用。 1、单位:牛(N )

2、力的三要素:大小、方向、作用点。

3、物体间力的作用是相互的。即作用力与反作用力,但它们不在同一物体上,不是平衡力。作用力与反作用力是同性质的力,有同时性。 二、力的分类:

1、按性质分:重力G 、弹力N 、摩擦力f

按效果分:压力、支持力、动力、阻力、向心力、回复力。

按研究对象分:外力、内力。 2、重力G :由于受地球吸引而产生,竖直向下。G=mg

重心的位置与物体的质量分布与形状有关。质量均匀、形状规则的物体重心在几何中心上,不一定在物体上。

弹力:由于接触形变而产生,与形变方向相反或垂直接触面。F=k³Δx 摩擦力f :阻碍相对运动的力,方向与相对运动方向相反。 滑动摩擦力:f=μN (N 不是G ,μ表示接触面的粗糙程度,只与材料有关,与重力、压力无关。) 相同条件下,滚动摩擦

用一水平力推一静止的物体并使它匀速直线运动,推力F 与摩擦力f 的关系如图所示。

力的合成与分解:遵循平行四边形定则。以分力F 1、F 2为邻边作平行四边形,合力F 的大小和方向可用这两个邻边之间的对角线表示。 |F1-F 2|≤F 合≤F 1+F2

222

F合=F1+F2+ 2F1F 2cosQ

平动平衡:共点力使物体保持匀速直线运动状态或静止状态。

解题方法:先受力分析,然后根据题意建立坐标系,将不在坐标系上的力分解。如受力在三个以内,可用力的合成。 利用平衡力来解题。 F x 合力=0 F y 合力=0

注:已知一个合力的大小与方向,当一个分力的方向确定,另一个分力与这个分力垂直时

是最小值。

转动平衡:物体保持静止或匀速转动状态。

解题方法:先受力分析,然后作出对应力的力臂(最长力臂是指转轴到力的作用点的直线距离)。分析正、负力矩。

利用力矩来解题:M 合力矩=FL合力矩=0 或 M 正力矩= M负力矩

第二章、直线运动

一、运动:

1、参考系:可以任意选取,但尽量方便解题。

2、质点:研究物体比周围空间小得多时,任何物体都可以作为质点。只有质量,没有形状与大小。

3、位移s :矢量,方向起点指向终点。表示位置的改变。

路程:标量,质点初位置与末位置的轨迹的长度,表示质点实际运动的长度。 4、时刻:某一瞬间,用时间轴上的一个点表示。如4s, 第4s 。

时间:起始时刻与终止时刻的间隔,在时间轴上用线段表示。如4s 内,第4s 内。

5、速度v :矢量,表示运动的快慢。v=s/t 。1m/s = 3.6 km/h 。大小为s-t 图中的正切tg θ。 平均速度:变速运动中位移与对应时间之比。

瞬时速度:质点某一瞬间的速度,矢量。大小为速率,标量。

6、加速度a :矢量,表示速度变化快慢与方向。 a = Δv/t 。大小为v-t 图中的正切tg θ。 a 、v 同向时,不管a 怎么变化,v 一定变大; a 、v 反向时,不管a 怎么变化,v 一定变小。 7、匀速:v 为定值,a=0 。

匀变速:a 为定值。设v 0方向为正方向,a 为负表示减速,a 为正表示加速。

5、 公式:

s

匀速: t

匀变速: 当v 0=0 时 当v 0=0、a=g时(自由落体) v t =v0+at v t = at v t = gt

s=v0t+1/2 at2 s = 1/2 at2 h = 1/2 gt2 v t 2-v 02=2as v t 2 =2as v t 2 =2gh

__v v 0+v t _v t =v =v t =v =t v t

v =v =22 t 22

22

22

v t v t

v s =v s =v s =

22222

s n – sn-1 = at2 h n – hn-1 = gt2

v 0+v t

2

22

注意:v s/2 >vt/2

二、比例公式:设v 0=0的匀加速直线运动。

1、1、2、3„„n 秒末瞬时速度之比(v t= at):v t :v 2:v 3:„„v n =1:2 :3 : „„n 2、1、2、3„„n 秒内位移之比(s = 1/2 at2):s t :s 2:s 3:„„s n =12:22 :3 2: „„n 2 3、第1、2、3„„n 秒内位移之比(Δs n = sn -sn-1=2n-1)

Δs t :Δs 2:Δs 3:„„Δs n =1:3:5 : „„(2n-1)

2s 4、连续相等位移时的时间之比: t =a

t 1:t 2:t 3: t n =1:2-1:3-2: n -n -1

)))

第三章、牛顿运动定律

一、牛一定律:一切物体总保持匀速直线运动状态或静止状态,一直到有外力迫使它改变这种状态为止。

牛一定律说明:力不是维持运动,而是改变运动状态,产生加速度。 任何物体在任何情况下,都有惯性,惯性只与物体的质量有关。质量越大,物体的惯性越大。 二、牛二定律:物体的加速度跟合外力成正比,与物体的质量成反比。

a = F合/m 或 F 合=ma (合外力方向与加速度方向一致)

解题方法:先确定受力物体,受力分析,然后根据物体的运动方向建立坐标系,将不在坐标系上的力分解。利用平衡力来解题。

∑F F x 合力= max a 连接体=

F y 合力= may ∑m

如受力在三个以内,可用力的合成:F 合力= ma

三、牛三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在一条直线上。由于这两个力不作用在一个物体上,所以它们不是平衡力。等大、反向、共线、异体。 四、牛顿定律的适用范围:宏观、低速运动的物体。 五、力学单位制中基本单位:质量m :千克(kg ),长度L :米(m ),时间t :秒(s )

第四章、曲线运动、万有引力

一、曲线运动条件:F 、v 不同线。此时,v 的方向为曲线的切线方向。

小船渡河时:图A 表示以最少时间渡河,图B 表示以最少位移渡河。

s s t ==v v 水-v 船

平抛运动的分解:分解为水平方向的匀速直线运动与竖直方向的自由落体运动。 x = v0t v x =v0 a x =0 tg θ= v y /vx =gt /v0 y=1/2 gt2 v y = gt a y =g v 2=vx 2+vy 2 Δv=gt

三、万有引力: 1、开普勒三定律:

A 、所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上, B 、对于每一颗行星,太阳和行星的联线在相等的时间内扫过相等的面积, 3

a

=k T 2

C 、所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。

Mm 2、万有引力定律:

F

=G 2

r

-1122

英国物理学家卡文迪许用扭秤测出引力常量:G=6.67³10N ²m /kg。表示两个单位质量的

-11

物体,质心相距1m 时,相互间的万有引力大小为6.67³10N 。式中r 表示两个物体质心之间距离。

3、重力是万有引力的一个分力,在赤道最小,两极最大。通常情况下, G ≈F 引。 4、宇宙速度:

A 、第一宇宙速度(环绕速度):7.9km/s 。是发射的最小速度,环绕的最大速度。 B 、第二宇宙速度(脱离速度):11.2km/s C 、第三宇宙速度(逃逸速度):16.7km/s

5、地球同步卫星与地球做同步的匀速转动,周期T=24h,位于地球赤道的正上方,高度为定值。

6、解题思路:万有引力、重力为向心力。式中,M 是被绕物体的质量,m 是绕行物体本身的质量。

请思考下列等式中的求解方法:

23

GM GM 4π2r 3(从式中,r 越大,()2πr GM g =2v =T =M =ω=r GM v 越小,T 越大。) r T 2G r 3

第五章、动量与动量守恒

二、动量定理:物体所受的合外力的冲量等于物体的动量的变化。

I 合=ΔP 或 F 合t = mvt —mv 0 (冲量方向与物体动量变化量方向一致) 公式一般用于冲击、碰撞中的单个物体,解题时要先确定正方向。

三、动量守恒定律:一个系统不受外力或受外力矢量和为零,这个系统的总动量保持不变。

' '

P 总 = P总’ 或 m 1v 1+m2v 2 = m1v 1+m2v 2

公式一般用于冲击、碰撞、爆炸中的多个物体组成的系统,解题时要先确定正方向。 系统在某方向上外力矢量和为零时,某方向上动量守恒。 四、完全弹性碰撞:在弹性力作用下,动量守恒,动能守恒。 非弹性碰撞:在非弹性力作用下,动量守恒,动能不守恒。

完全非弹性碰撞:在完全非弹性力作用下,碰撞后物体结合在一起运动,动量守恒,动 能不守恒。系统机械能损失最大。 五、动量与动能的关系: P 2

E k =P =2mE k

2m

第六章、机械能

一、功与功率:

2、汽车启动:

二、功和能的常用计算公式:

外力F 对物体做正功,外界给物体能量,物体的能量增加, 外力F 对物体做负功,物体给外界能量,物体的能量减少,

重力G 对外界做正功,物体给外界能量,物体的势能减少, 重力G 对外界做负功,外界给物体能量,物体的势量增加,

三、能量的转化通过做功来实现。

A 、动能定理:合外力对物体所做的功等于物体动能的变化。

W 合 = Ekt — E k0 F 合s = 1/2 mvt 2 — 1/2 mv02 应用于受外力运动的单个物体。 B 、机械能守恒定律:只有重力(或弹力)做功时,物体的动能与势能发生相互转化,但机械能的总量保持不变。应用于只受重力(弹力)运动的单个物体。计算时不要考虑中间过程。 E k1 + Ep1 = Ek2 + Ep2 1/2 mv12+ mgh 1= 1/2 mv22+ mgh2

熟记公式:初速度为0的只有重力做功式的下落,末速度大小为 v t =2gh 线拉物体做圆周运动刚好通过最高点的线速度大小为

v

=gr

杆拉物体做圆周运动刚好通过最高点的线速度大小为 v=0

第七章、机械振动与机械波

一、胡克定律:在弹性限度内,弹簧的伸长与所受的外力成正比。 1、公式:F= k²ΔX = k ²(L —L 0)

2、劲度系数k 是弹簧的一个特性,与外界无关。 3、两根弹簧并连:k=k1+k2 ,两根弹簧串连: k =k 1∙k 2

k 1+k 2

二、机械振动:

1、简谐运动:物体受F= —kx 的回复力作用时所作的运动。回复力是合力,大小与位移x 成正比,方向与位移x 相反。

例如:弹簧振子、单摆、皮球在水面上、小球在凹槽里的来回往复的运动。 2、物体作简谐运动时,

在平衡位置处:速度v 、动能E k 最大,位移x 、回复力F 、加速度a 、势能E p 最小。 在最大位移处:速度v 、动能E k 最小,位移x 、回复力F 、加速度a 、势能E p 最大。 3、全振动:振动物体的位移矢量、速度矢量均回到原来的大小和方向。

①振幅A :振动物体离开平衡位置的最大位移。振幅≠路程≠位移。是标量,表示振动能量的大小。单位:米(m )。

1②周期T :振动物体完成一次全振动所需的时间。单位:秒(s )。 T =f ③频率f :振动物体在单位时间内完成全振动的次数。单位:赫兹(Hz )。

④固有周期、固有频率:振动系统本身的性质决定的周期与频率,与外界无关。 弹簧振子的固有周期: 单摆的固有周期:

L m

T =2

πT =2π

g k

4、简谐运动的x —t 图像是正弦或余弦曲线。曲线不是振子的运动轨迹。它表示振子的位移与时间的变化关系。每一时刻的振子的机械能都相等。在图中可直观读出:振幅A 、周期T ,各时刻对应的振子的位移。 5、简谐运动的图像分析:(0时刻为起点)

由平衡位置向正方向运动 由正最大位移向平衡位置运动 由平衡位置向负方向运动 由负最大位移向平衡位置运动

6、阻尼振动:因受摩擦和其它阻力,振幅逐渐减小的振动。但不影响自身的周期和频率,仍有等时性。将机械能转化成内能。

7、受迫振动:在周期性驱动力下的振动。 ①振动稳定后,振动的频率等于驱动力的频率,与物体固有频率无关。 即:f 受迫=f驱动 。 ②共振:当驱动力的频率接近物体的固有频率时,受迫振动的振幅最大。声音的共振称为共鸣。 条件:f 驱动=f固有 。

8、简谐运动的应用:单摆。

①简谐运动的条件:摆角θ<5°。

②图中重力G 的G x 分力是回复力,拉力F 与G

分力的合力是向心力。 ③周期公式: T =2πL ≈2g

④秒摆:周期是2秒的单摆。摆长约为1米。 ⑤双线摆周期公式: T = 2 π L 锥摆周期公式: T =2πL ∙cos 等效

g g 22

4πn L

g =⑥用单摆测重力加速度的公式: t 2

三、机械波:

1、波的形成条件:波源、介质。

2、机械振动在介质中的传播形成机械波;各质点只在自己平衡位置附近振动,并不随波迁移;以波的形式向前传播的只是能量、波形或振动形式。沿波的传播方向,各质点的振动依次落后。

3、横波:质点的振动方向与波的传播方向垂直的波。波峰、波谷都是质点位移最大的位置。 纵波:质点的振动方向与波的传播方向平行的波。密部、疏部都是质点位移最大的位置。 4、简谐波:简谐振动在介质中的传播。波形是一条正弦或余弦曲线。注意传播方向。 56、波长λ:任意相邻的两个同步振动的点的平衡位置之间的距离。

横波中的任意相邻的两个波峰(波谷)以及纵波中的任意相邻的两个密部(疏部)之间 的距离都等于一个波长。波长不是波曲线的长度。

时间周期

公式:能量向前移动的速度: 波速=s λ=

v ==

t T

同一个波中:波长λ、周期T 、频率f 、波速v 、振幅A 都相等。F 由波源决定,v 由介质决定。

7、波由一种物质进入另一种物质时,波的频率f 不变,波长λ、波速v 要改变。 8、波的衍射:波绕过障碍物继续传播的现象。

条件:缝、孔或障碍物的尺寸与波的波长相近或比波长小。

衍射时,波的性质(波长λ、频率f 、波速v )不变,振幅A 减小。

9、波的干涉:频率相同的两列波叠加,使某些区域振动加强,某些区域振动减弱,而且加强区与减弱区相互隔开。

条件:两列波的频率相同。

振动加强区:波峰遇波峰、波谷遇波谷。路程差是半波长的偶数倍。图中的实线遇实线、虚线遇虚线:A=A1+A2。

振动减弱区:波峰遇波谷。路程差是半波长的奇数倍。图中的实线遇虚线:A=|A1—A 2|。 干射时,波的性质(波长λ、频率f 、波速v )不变,振幅A 要增大或减小。

10、多普勒效应:由于波源与观察者之间有相对运动,使观察者感到波的频率发生变化的现象。当波源与观察者相对靠近时,观察者接收到的频率增加,音调变高;当波源与观察者相对远离时,观察者接收到的频率减少,音调变低。

衍射、干涉、多普勒效应都是波的特征,一切波都会发生衍射、干涉、多普勒效应。 11、人耳的听觉范围:20Hz —20000Hz 。

超声波:频率高于20000Hz 的声波。 次声波:频率低于20Hz 的声波。

第八章、分子热运动、热和功

一、分子动理论:物体是由大量分子组成的,分子永不停息地作无规则的运动,分子间存在相互作用的引力和斥力。

-10

2、1mol 的任何物质中都含有相同的粒子数:阿伏加德罗常数N A =6.02X10/mol

标准条件下,1mol 的任何气体的体积为22.4L 3、温度越高,分子运动越剧烈。

扩散:不同的物质相互接触时,彼此进入对方的现象。

布朗运动:液体中悬浮微粒所作的无规则运动。由于各个方向液体分子对微粒不平衡作用而引起。布朗运动不是液体分子的运动,也不是微粒分子的运动,而是液体分子无规则运动的反映。图中的轨迹不是微粒实际运动的轨迹。温度越高,微粒质量越小,布朗运动越明显。

4、气体的三个状态参量:体积V ,压强p ,温度T (绝对温度T= t+273.15)。 三者关系:pV/T = 常量 气体分子运动特点:除碰撞外都在做匀速直线运动,任一时刻分子向各个方向运动的机会相等(分子速率分布呈“中间多,两头少”的规律)。

气体压强由大量气体频繁地碰撞器壁而产生。决定气体压强的两个因素:分子平均动能,分子的密集程度。

的数量级为1010

二、内能:物体内所有分子动能与分子势能的总和。

1、温度越高,分子平均动能越大,单个分子动能不一定大。 2、物体体积变化时,分子间距变化,分子势能变化。

分子力做正功,分子势能减少;分子力做负功,分子势能增大。

理想气体的内能只取决于气体的温度、物质的量,与气体的体积无关。 3、改变内能的两种方式:做功、热传递。(二者等效)

三、能量守恒定律:

1、内容:能量既不会凭空产生,也不会凭空消失。它只能从一种形式转化为别的形式,或从一个物体转移到别的物体。在转化或转移过程中,总量不变。 功是能转化的量度。

2、热力学第一定律:物体内能的增量ΔU 等于外界对物体所做的功W

加上物体从外界吸收的热量Q 。ΔU=W+Q

ΔU :内能增加为“+”,减少为“—”; W :外界对系统做功(如压缩气体)为“+”,系统对外界做功(如气体膨胀)为“—”; Q :系统吸收热量为“+”,系统放出热量为“—”。 第一类永动机违反能量守恒律。 3、热力学第二定律:

A 、克劳修斯表述:热量不可能自动地从低温物体传向高温物体。

B 、开尔文表述:不可能从单一热源吸收热量并把它全部用来做功而不引起其它变化。或第二类永动机不可能制成。

第二类永动机不违反能量守恒定律,但违反热力学第二定律。 能源:提供可利用能量的物质。

热力学第一定律指出热力学过程中的能量的守恒性;热力学第二定律热力学过程中的能量转移、转化的方向性。

4、热力学第三定律:绝对零度不能达到。

第九章、电 场

一、电荷 :

1、自然界中有且只有两种电荷:丝绸摩擦过的玻璃棒带正电,毛皮摩擦过的橡胶棒带负电。 电荷间的相互作用:同种电荷相互排斥,异种电荷相互吸引。

2、电荷守恒定律:电荷既不会创造,也不会消灭,只能从一个物体转移到另一个物体,或从物体的一个部分转移到另一个部分。

“起电”的三种方法:摩擦起电,接触起电,感应起电。实质都是电子的转移引起:失去电子带正电,得到电子带等量负电。 3、电荷量Q :电荷的多少

元电荷:带最小电荷量的电荷。自然界中所有带电体带的电荷量都是元电荷的整数倍。 密立根油滴实验测出:e=1.6³10—19C 。

点电荷:与所研究的空间相比,不计大小与形状的带电体。

库仑定律:真空中两个点电荷之间相互作用的静电力,跟它们的电荷量的乘积成正比,跟它们的距离的平方成反比。

Qq

公式: F = k k = 9³109 N²m 2/C2

2r

二、电场:

1、电荷间的作用通过电场产生。电场是一种客观存在的一种物质。电场的基本性质是对放入其中的电荷有力的作用。

2、电场强度E :放入电场中的电荷所受电场力与它的电荷量q 的比。 E=F/q 单位:N/C或V/m

3、电场线:形象描述场强大小与方向的线,实际上不存在。疏密表示场强大小,切线方向表示场强方向。一率从“+Q”指向“—Q ”。正试探电荷在电场中受电场力顺电场线,负电荷在电场中受电场力逆电场线。

电场线的轨迹不一定是带电粒子在电场中运动的轨迹。只有电场线为直线,带电粒子初速度为零时,两条轨迹才重合。任意两根电场线都不相交。

4、静电平衡时的导体净电荷只分布在外表面上,内部合场强处处为零。导体是一个等势体。

三、电势与电势能:

1、电势差U :将电荷q 从电场中的一点A 移至B 点时,电场力对电荷所做的功W AB 与电荷q 的比。 U= WAB /q 。电势差是一个标量。公式中的三个物理量计算时要注意“+,—”符号。U= WAB /q只取决于电场两点位置,与W 、q 等无关。 单位:V

电势φ:将电荷q 从电场中的一点A 移至无穷远时,电场力对电荷所做的功W 与电荷q 的比。通常取大地与无穷远处为零电势点。 单位:V

电势差的大小与零电势点的选取无关,只与电场中的两点位置有关;电势的大小与零电势点的选取有关。 U AB =φA —φB

2、沿着电场线的方向,电势越来越低。电场线方向为电势降低最快的方向。顺电场线方向算电势差为“+”,逆电场线方向算电势差为“—”。

电场力做正功,电势能减少;电场力做负功,电势能增加。 3、电子伏(eV )是电功、电势能的单位。 1 eV = 1.6³10—19J 。

4、在同一等势面上移动电荷,电场力不做功。等势面一定电场线垂直。电场线的方向由高等势面指向低等势面。等势面越密,场强越大。

例:作出上面几个图中的等势面。

四、电容C :

1、电容C :任何两个彼此绝缘的又相隔很近的物体组成电容。

2、计算方法:电容器所带电荷量Q 与电容器两极板电压的比。 C =Q =∆Q

U ∆U

电容表示电容器容纳电荷的本领,与Q 、U 等无关。 额定电压:电容器长期工作时所能承受的最大电压。

击穿电压:击穿电容器的电介质使电容器损坏的电压。 U 额定

4πkd

例:一个两个极板分别带±1.6³1010C 的电容,电容量为5pF ,两极板电压U 是将两极板用导线连接后,带电量是 ,两极板电压U 是 ,电容量是 ,拿走导线后带电量是 ,两极板电压U 是 ,电容量是 。 例:电容量改变后各个物理量的更变。

2 U 2U 2L 21、带电粒子在U (U 1)的加速: 1 2 qL y =at ==2

2 2 mdv 0 4dU 1 W=ΔE k 1/2 mv2 = qU

2qU v y at

U 2qL U 2L L v =

tg φ====y =tg φm 2 v 0v 0mdv 02dU 12

式中,U 是两极电压,电场

不一定是匀强电场。

2、带电粒子在U 2中的偏转:类似

平抛

F qE qU 2 L

a ===t =

v m m dm 0

第十章、恒 定 电 流

一、电荷定向移动形成电流。

1、形成电流的条件:要有自由电荷,导体两端存在电压。即:自由电荷在电场力的作用下定向移动。

2、电流方向:正电荷定向移动的方向,负电荷定向移动的反方向。 3、电流(I ):单位时间内流过导体横截面积的电荷量。

I=q/t q 表示电荷量,t 表示通电时间

I=nqvS n :单位体积内的自由电荷数 q :自由电荷的电荷量

v :电荷定向移动的速率(非常小,数量级105m/s) S 国际单位:安培(A ) 1AmA 1mA=103μA 4、电流I 是标量,不是矢量。 二、欧姆定律:

1、部分电路欧姆定律:阻成反比。 公式:I=U/R

适用条件:

2阻之和成反比。I=E/( 路端电压减小。

当电路开路时,根据。 3、电阻(R )U

公式: = U = ∆ 。R 与 R

I ∆I

ρ:导体的电阻率,ρ ρ的国际单位:Ω²m

l

四、电功与热功,电功率与热功率:

电功W :电场力对自由电荷所做的功,俗称电流做功。国际单位:焦耳(J ) 电功率P :电流在单位时间内所做的功。国际单位:瓦特(W )

用电器正常工作时的电功率为额定功率,此时的电压为额定电压,电流为额定电流。

I g 。 4、欧姆表:直接测量电阻值的电表。

原理图:如图。注意:黑笔接内电源的正极。

使用注意点:每次测量前先使红、黑表笔相碰,调节调零电阻R P ,使指针指在零刻度。

第十一章、磁 场

一、磁场:

1、基本性质:对放入其中的磁极、电流有力的作用。

1、定义:磁场对电流的作用力。

2、计算公式:F=ILBsinθ=I⊥LB 式中:θ是I与B的夹角。

电流与磁场平行时,电流在磁场中不受安培力;电流与磁场垂直时,电流在磁场中受安培力最大:F=ILB 0≤F ≤ILB

3、安培力的方向:左手定则——左手掌放入磁场中,磁感线穿过掌心,四指指向电流方向,大拇指指向为通电导线所受安培力的方向。 三、磁感应强度B:

1、定义:放入磁场中的电流元与磁场垂直时,所受安培力F跟电流元IL的比值。

F 2、公式: 磁感应强度B是磁场的一种特性,与F、I、L等无关。 B =

IL

注:匀强磁场中,B与I垂直时,L为导线的长度; 非匀强磁场中,B与I垂直时,L为短导线长度。 3、国际单位:特斯拉(T)。

4、磁感应强度B是矢量,方向即磁场方向。 磁感线方向为B方向,疏密表示B的强弱。

3、大小:F=qv⊥B

4、洛伦兹力始终与电荷运动方向垂直,只改变电荷的运动方向,不对电荷做功。 5、电荷垂直进入磁场时,运动轨迹是一个圆。

m v 轨道半径只与粒子的m 、v 、q 有关。 r =

qB 2πm

轨道周期只与粒子的m 、q 有关,而与粒子的r 、v T =2qU 等无关。

qB

质谱仪:

m v

r ==

qB

m

m qB

=

d 2

22

不同的谱线半径可知粒子的质量: m =B qd

8U

六、加速器:

1、直线加速器: v n =2q (U 1+U 2+⋅⋅⋅+U n )

m

2、回旋加速器: T

=2π

m =T

交变

qB

七、安培分子电流假说:磁体内部有环形分子电流,

一、磁通量():

1、定义:磁感应强度B 等因素无关。

2、公式:Φ=BS (S

V ∙s 34

二、电磁感应:

1、定义:闭合电路中就有感应电流产生。其实质就

2、电路闭合时才有感应电流。产生感应电动势的那部分电+”);+”流向“—”)。

3电路中的感应电动势的大小, 跟穿过这一电路的磁通量的变化率成正比。 ∆Φ

E =N

∆t 公式: ∆Φ

式中,E 是Δt 时间内的平均感应电动势,ΔΦ∆t 化率,N 是线圈的匝数。主要应用于求Δt 时间内的平均感应电动势。

量的减少;并不仅仅是阻止。

右手定则:伸开右手掌,让磁感线穿过掌心,四指所指为感应电动势方向的判定。 三、自感:

1 2

∆I 公式:

E =L

∆t

式中L

L 1H=103mH 1mH=103μH

3、日光灯原理:

:利用氖管的辉光放电,自动把电路接通、断开,(没有电容也能工作)。日光灯接通发光时,起动器不起作用。

镇流器:在日光灯点燃时,利用自感现象,产生瞬时高压,使灯管通电日光灯正常发光时,利用自感现象起降压、限流作用。

第十三章、交变电流

一、交变电流的产生: 1、原理:电磁感应 2、中性面:线圈平面与磁感线垂直的平面。发电机的线圈与中性面重合时,磁通量Φ最大,感应电流与感应电动势最小,感应电流的方向从此时发生改变。

线圈平面平行与磁感线时,磁通量Φ最小,感应电流与感应电动势最大。

穿过线圈的磁通量与产生的感应电动势、感应电流随时间变化的函数关系总是互余的: 取中性面为计时平面:e=Em sin ωt φ=Φm cos ωt i=Im sin ωt u=Um sin ωt

3、正弦(余弦)交变电最大值(峰值)A m 与有效值A 的关系:

U m I m

I ==0. 707I U ==0. 707U m m

5、周期(T )s ) 频率(f )秒内周期性变化的次数。单位:赫兹(Hz ) T=1/f f=2π/T

50 Hz,周期0.02s (1s 方向变100次)。

1

R ==2πfL

2πfC

1、原理:原、副线圈中的互感现象,原、副线圈中的磁通量的变化率相等。

I 1n 2∆Φ1∆Φ2 U 1n 1

===I 2n 1U 2n 2∆t 1∆t 2 P 1=P2

2、变压器只变换交流,不变换直流,更不变频。

原、副线圈中交流电的频率一样:f 1=f2

高压线圈匝数多、电流小,导线较细;低压线圈匝数少、电流大,导线较粗。

3、如左图:U 1:U 2:U 3=n1:n 2:n 3 n 1 I1=n2 I2+ n3 I3

P 1=P2+P3

四、电能输送的中途损失: 1

P ΔU=Ir线= r 线 =U电源—U 用户 ΔU ∝ U U

1

2 P ΔP=Ir 线= ( ) 2 r 线 =P电源—P 用户 ΔP ∝ U 2

U

五、三相交变电:

1、原理:三个互成120度的同种线圈同时转动产生三相交变电动势。 U 1=Um sin ωt u 2=Um sin (ωt-2/3π) u 3=Um sin (ωt-4/3π) 2、相电压:端线(火线、相线)与中性线之间的电压。 线电压:两根不同的端线之间的电压。 电源Y 形连接:U 线

= U 相 电源Δ形连接:U 线= U相

3、例:下列四个图中,单相电压是220V

第十四章、电磁场与电磁波

一、电磁振荡的产生:

1 振荡电路(LC 回路)LC 回路中产生正弦交变电。

电容C 毕;电容C 毕。(放电时,“+”流向“—”;充电时,电流方向从电容“—”流向“+”。) i=Im sin ωt ,q=Qm cos ωt

2 3

T =2πLC f ):一秒钟内完成的周期性变化的次数。 ε⋅S

C =1 LC 回路的周期与频率由回路本身的特性来决定,与外界因素无关:f =4π⋅kd

2πLC

二、电磁场:变化的电场与磁场相互联系,形成的不可分的统一体。 1、英国麦克斯韦建立完整的电磁场理论。 2、具体内容:变化的磁场产生电场,变化的电场产生磁场;均匀变化的磁场产生稳定电场,均匀变化的电场产生稳定磁场;振荡的电场产生振荡的磁场,振荡的磁场产生振荡的电场。 3、电磁波:电磁场由近向远的传播。电磁波本身是一种物质,传播时不需要媒质,是能量的一种传播方式。

产生条件:足够高的频率,开放电路。

特点:电磁波沿“电场与磁场垂直”的方向传播,是横波;电场与磁场同频变化,变化关系同步;真空中传播速度:c=3³108m/s,在介质中的传播速度:v=λf=λ/T以产生反射、折射、干涉和衍射等现象。

注意:f 、T 由波源决定,同一电磁波进入不同介质时不变,v 、λ改变。 三、无线电波的发射与接收:

1、调制:将信号加载到电磁波上,分调幅、调频和调相三种。 电磁波在空间遇导体时产生同频率的感应电流。 2、解调(检波):从高频电磁波中取出信号的过程。

电谐振:接收LC 此过程为调谐。

第十五章、几何光学

一、光源:能够自行发光的物体。被照亮的物体、实像、虚像等不是光源,但可以引起人的视觉,解题时可以当成“光源”来处理。

二、光的直线性:光在同种均匀介质中沿直线传播。

1

2、影子:光被不透明的物体挡住后形成的暗区。 点光源形成本影,非点光源形成本影和半影。在本影区完全看不到光源的光;在半影区只能看到光源的某部分发出的光。

3、光在真空中(近似在空气中)的速度:c=3³108m/s

4 三、反射定律:

1、内容:反射光线、入射光线、法线在同一平面内,反射光线与入射光线在法线两侧,反射角等于入射角。 围绕入射点将平面镜偏转a 角度,法线也偏转a 角度,反射光线偏转2a 角度。

镜面反射与漫反射都遵守光的反射定律。

2、平面镜成像规律:物体在平面镜中成虚像,像与物体大小相等,

像与

物体到镜面的距离相等,像和物体的连线与镜面垂直。(对称) 人要在平面镜中看到自己全身像,镜高至少是自己身高的一半。

3、观察范围:人眼(位置可动)通过光学仪器观察物体的像时,人眼所处的空间区域。先作物体像,再作像到光学仪器两条边界,之间为范围。

视场:人眼(位置固定)通过光学仪器观察物体的像,像所处的空间区域范围。先作眼睛的像,再作像到光学仪器两条边界,之间为范围。 四、折射定律:

1、内容:折射光线、入射光线、法线在同一平面内,折射光线、入射光线在法线两侧,入射角的正弦值与折射角的正弦值成正比。 斯涅耳定律: sin i =n

sin

r

2、折射率(n ):光从真空射入介质中时,

3、任何介质的折射率都大于1。 碍本领。

五、全反射:

1、光疏介质:折射率较小的介质。 光密介质:折射率较大的介质。 光疏介质与光密介质是相对的。2射光线不是折射光线。

3C 。sinC=1/n 4、光导纤维:a 时,刚好从另一端射出时:如右图。

1、面的光偏n 红、橙、黄、绿、蓝、靛、紫七色光。

棱镜对红光的折射率小,介质中的红光光速大; 棱镜对蓝光的折射率大,介质中的蓝光光速小。

2、全反射棱镜:横截面是等腰直角三角形(临界角C=42度)。如右图。 七、作用:

三棱镜:向底边偏折光线,色散。 平行玻璃砖:平移光线

全反射棱镜、平面镜,改变光路方向,不改变聚散性质。

第十六章、波动光学

一、干涉:频率相同的两列波叠加后,某些区域振动加强,某些区域振动减弱,加强区与减弱区相互隔开。

加强条件:路程差为半波长的偶数倍——

∆s =2k ⋅λ

2

光的直线性是光波动的一个近似。

三、光的电磁说:

1、光波是电磁波的某一部分。

2、光波在真空中的传播速度:c=3³108m/s,是横波。

3、公式:v=λ/T=λf = c/n (光进入另一介质时,频率、周期不变,波长、波速改变。)

可见光的波长范围:370nm —750nm

1414面) tg ip =n

第十七章、原子物理

一、光具有波粒二象性

1、光的粒子性:光电效应实验、康普顿效应实验证明。

A 、光电效应:在光量子照射下,物体发射光电子的现象。说明光的粒子性。 条件:ν>ν极限,λ

B 、光量子的能量:E=hν=hc/λ 普朗克常量h=6.63³1034J ²s C 、光的强度决定于每秒金属发出的光电子数,决定光电流强度。

光的频率决定每个光子的能量,决定电子射出后的最大初动能。

D 、光电效应方程:E k = hν—W E 、光电管:

2、光的波动性:光的干涉、衍射、偏振实验证明。

3、光波是一种概率波:大量光子中的个体光子的运动服从一定概率,整体体现波动规律。 个别光子干涉实验:个别光点——粒子性 大量光子干涉实验:明暗相间条纹——波动性 4、波动性是光子本身的一种特性:

1、轨道量子化:电子的轨道半径只能取某些独立值。

能量量子化:电子做变速运动时状态稳定,不对外辐射能量;

E m — E n = hν (m>n) 对应光谱呈分立线状型。 2、动能增2

三、物质波:实物粒子运动具有不确定性, 公式: λ=

h =h

p m v

四、原子的结构模型:

1 2、卢瑟福的a 很小的原子核集中了全部的正电荷和绝大多数的质量,

3

231 1H (氘) 1H (氚)

1、原子序数大于82的所有元素,部分小于83的元素有放射性。射线来自原子核的内部,不是核外电子。核衰变是产生天然放射性现象的根本原因。

组成 穿透力 电离能力

4

α 2 He 最弱 最强

e 较强 较强 β - 1

γ 光子,电磁波 最强 最弱 2344

, 两个质子同时从核射出) α衰变: 23892U →90Th +2He +γ(两个中子

2342340

中子转化为质子和电子, 从核中射出电子) 90Th →91Pa +-1e +γ(

β衰变: t

1m =m 0⨯() 半衰期(τ):放射性元素的原子核有半数发生衰变所需要的时间。 2

半衰期是元素的一个特性,与外界因素无关。是统计规律,对单个原子核没有意义。

(m v ) αβ

r αβq αβB q

==新

(m v ) 新r 新q αβ

q 新B

2、人式核转化反应:原子核在a 粒子等的轰击下产生新原子核的过程。

144171

卢瑟福发现质子: 7N +2He →8O +1H

94121

查德威克发现中子: 4Be +2He →6C +0n

所有元素中铁元素的核子平均质量最小。

3、裂变反应:重核分裂成质量较小的核的过程。

2351141921

如链式反应(雪崩反应):92 U +0n →56Ba +36Kr +30n

22312341

如: 1H + 1 H → 2 He + 0 n + 17 . 6 MeV 1H 1 H → 1 H + 4 MeV 但反应温度高。

4、核反应中质量亏损能量>>爱因斯坦质能方程:E=mc2 E=c 2

原子(质)量单位:u 1027kg 1u 相当于931.5MeV 的能量。


相关内容

  • 浅谈中学物理教学中"过程和方法"目标的达成
    [摘要]深化课程改革也要非常注重三维目标的达成,尤其是"过程和方法"目标的达成,在物理教学中如何实施,如何操作,是我们在平时的教学实践中急待解决的问题.而在我们平时的教学中,感到"过程和方法"目标的达 ...
  • 高中历史必修一第四单元复习提纲
    年的五四运动. 第四单元:近代中国反侵略,求民主的潮流 [知识网络结构] : [背景知识与单元线索] 1."中国近代史":指中国半殖民地半封建社会的历史(划分标准:社会性质),开始于1840年鸦片战争,结束于1949年中 ...
  • 荷山中学高一暑假学生自主学习计划指导(完整版)
    荷山中学高一暑假学生自主学习计划指导 尊敬的家长.亲爱的同学们: 高中生活的第一学年已经结束,即将进入的高二文理分科学习,将是整个高中阶段的一个重要的崭新的起点,也可能是很多同学学习成效的另一分水岭.因此即将来临的暑假自主学习时间对于每位同 ...
  • 安徽省20**年高考新政策及备考建议
    安徽省2015年高考新政策及备考建议 今年高考怎么考?有哪些变化?随着昨日安徽省2015年<考试说明>的陆续发放,这个疑问也找到了答案. 和去年相比,今年高考不论是考点还是题型都以"平稳过渡"为准则,只有一些 ...
  • 走出议论文写作的困境
    作者:刘吉英 中学语文教学参考:高中版 2012年05期 议论文写作一直是高中教学和高考复习的重头戏,但收效甚微.近几年屡屡出现关系型议论文考题,更是让高三学子面露难色,头绪混乱,陷入思维的僵局.笔者在2011年福建省质检"有益与 ...
  • 20XX年高考作文备考计划
    2014年高考作文备考计划 备考计划要早做 1.备考目标 有了对高考作文命题的研究,有了明确的训练方向,我们还要制定一份备考2014年和今后高考作文的计划,以时时监督自己,打好基础. 一 备考目标 1.进一步提升思想认识水平. 2.充分把握 ...
  • 我是一株伽蓝花
    我是一株伽蓝花--写在生物联赛之后 [感受+总结+经验] 周一的时候,生物老师告诉我,生物联赛拿了省一. 当时,很高兴. 除此之外,还有一些复杂的感受,想要写点东西来表达出来,总结一下我并不长的生竞经历. 并不是想炫耀什么,毕竟吧里这么多国 ...
  • 生命科学知识点复习提纲
    生命科学知识点复习提纲 (第二册) 第五章 生物体对信息的传递和调节 第一节 动物体对外界信息的获取 一.感受器的类型: 物理(皮肤感受器.光感受器.声波感受器.其他感受器) 化学(味觉感受器.嗅觉感受器) 二.各种感受器的作用 1. 皮肤 ...
  • 初中升高中的衔接教育
    初中升高中的衔接教育 刚刚结束完中考的学生如今又该为新学期的到来忙碌了.初中升高中不仅是人生的一大转折,在学业上也有很大的变化.处在这一阶段的学生在学习进度.方法.习惯.心态等方面都要有一个逐渐适应的过程,如何做好初中升高中的衔接工作,成为 ...
  • 天津教研网
    提高新课程高中物理总复习教学有效性的思考 作者:天津市教研室 高 杰 发布时间:2010-1-7 已经阅读473次 高三复习作为高中物理教学的一个重要组成部分,目的在于使学生深化对知识的理解,拓展思维空间,提高分析.解决问题的能力和科学素养 ...